上篇文章处理了定义而不是,我们知道基是什么,但不知道如何找到他们。现在,从一个明确描述的子空间开始,我们开始计算显式的基。
子空间能用两种方式描述。第一,我们可以给出一个生成空间的向量集合。(例如:列生成列空间)第二,我们可以给出空间中的向量必须满足什么条件。(例如:零空间包含满足 Ax=0 的所有向量)
第一个描述可能包含无用的向量(相关列),第二个描述可能包含重复的条件(相关行),我们无法通过观察写出一个基,那么就需要一个系统的过程。
读者能够猜出来那个过程发生了什么,当在
A
上执行消元得到阶梯矩阵
当秩尽可能大的时候,
r=n or r=m or r=m=n
,矩阵存在左逆
B
或右逆
接下来我们轮流讨论四个子空间,他们里面有两个是相似的,另两个是新的。
-
A
的列空间用
C(A) 表示,它的维数是秩 r 。 A 的零空间用 N(A) 表示,它的维数是 n−r 。-
A
的行空间是
AT 的列空间,即 C(AT) ,它有 A 的行生成,维数也是r 。 -
A
的左零空间是
AT 的零空间,它包含使 ATy=0 的所有向量 y ,写作N(AT) ,它的维数是_
最后两个子空间来自于
AT
,如果
A
是一个
零空间 N(A) 和行空间 C(AT) 是 Rn 的子空间,左零空间 N(AT) 和列空间 C(A) 是 Rm 的子空间。
行有
n
个元素,列有
列空间是通过第一列的直线,行空间是通过
[100]T
的直线,它位于
R3
里,零空间是
R3
中的一个平面,左零空间是
R2
里的一条线:
注意所有向量是列向量,甚至行都是转置的,
A
的行空间是
为了新鲜感,我们以一个有趣的顺序介绍这四个子空间。
3.
A
的行空间,对于像
13、
A
的行空间和
原因是每个初等变换没有改变行空间,
U
中的行是
注意我们开始没有说
A
的
2.
14、零空间 N(A) 维数是 n−r ,特解是一个基——每个自由变量给定值1,而其他自由变量设为0,那么 Ax=0,Ux=0,Rx=0 通过回代得出主元变量。
这就是求
Ux=0
的准确方法,上面的例子中主元在1,3列,因此自由变量是2,4列的
v,y
,零空间的基是
任何组合 c1x1+c2x2 都会有 v,y 元素,所以 c1x1+c2x2=0 的唯一方式是 c1=c2=0 ,所以这些向量是无关的,他们也产生零空间;完整解是 vx1+yx2 ,因此 n−r=4−2=2 个向量是一个基。
零空间也叫作
A
的核,它的维数
1.
A
的列空间,列空间有时叫做值域。这和一般意义上的值域意义是一致的,就是所有可能值
我们的问题是找出 U,A 列空间的基,这些空间是不同的,但是他们维数是一样的。
U
的第一和第三列是列空间的一个基,他们是含有主元的列,其他列都是这两列的一个组合。更进一步,原始矩阵
理由是这样的:当
Ux=0
时
Ax=0
,两个系统是等价的并有相同的解,
U
的第四列也是列3-列1,
为了找出列空间
15、列空间
行空间和列空间有相同的维数
下面举一个例子,考虑
r=3
的情况,阶梯形
U
明显有三个无关行:
我们说
从下往上看,
c3
必须是零,因为
d3≠0
,那么
c2
必须是零,因为
d2≠0
,最终
c1=0
。因为当且仅当
Ux=0
时
Ax=0
,无论原始矩阵
A
是什么,它的1,4,6列是
行空间和列空间在
A
上执行消元后变得很清楚,现在我们开始第四个基本子空间,因为前三个子空间是
4.
零空间
N(AT)
的维数很容易找到,对于任意矩阵,主元变量的数目加上自由变量的数目肯定是总的列数。对于
A
就是
这个法则同样可以用到 AT 上,它有 m 列。
16、
yTA=0
的
m−r
个解隐藏在消元中,
A
的行组合产生
在我们
3×4
的例子力,零行是3-2(行2)+5(行1),因此
y
的元素为5,-2,3,在右边有同样的组合
目前为止 N(AT) 讲的比较少,我们在下一篇文章中会讲到它在基尔霍夫定律中的物理意义,那时候详细讲效果会更好点。
现在我们知道四个空间的维数,让我们总结一下
- C(A)=A 的列空间;维数是 r 。
N(A)=A 的零空间;维数是 n−r 。- C(AT)=A 的行空间;维数是 r 。
N(AT)=A 的左零空间;维数是 m−r 。
例1:矩阵 A=[1326] 行列为2 m=n=2 ,秩为1 r=1 。
- 列空间包含所有 [13] 的倍数,第二列和第一列方向相同不产生新的东西。
- 零空间包含 [−21] 的所有倍数,这个向量满足 Ax=0 。
- 行空间包含 [12] 的所有倍数,我把它写成列向量,因为严格来讲它是 AT 的列空间。
- 左零空间包含
[−31]
的所有倍数,
A
行的系数-3和1相加得到零,所以
ATy=0 。
这个例子中四个空间都是一条直线,这纯属偶然,因为 r=1,n−r=1,m−r=1 。图1中展示了两对线是垂直的,这个可不是偶然!
如果我将
A
的最后一个元素改成7,所有的维数都是不同的,行空间和列空间维数是2,零空间和左零空间只有向量
图1
逆的存在性
我们知道如果
A
有左逆(
秩肯定满足
r≤m,r≤n
,一个
m×n
矩阵不可能超过
m
个无关行或
只要方阵才能 r=m,r=n ,因此才能即有存在性又有唯一性,只有方阵才能保证两边都有逆。
17、存在:行满秩
r=m
。当且仅当列生成
Rm
时,
Ax=b
对每个
b
至少有一个解
唯一:列满秩
r=n
。当且仅当列是线性无关的时候,
Ax=b
对每个
b
最多有一个解
在存在的情况中,一个可能解是 x=Cb ,因为 Ax=ACb=b ,但是如果其他右逆的话将会有其他解,当列生成 Rm 时解的个数为1或 ∞ 。
在唯一的情况中,如果 Ax=b 有一个解,那么它肯定是 x=BAx=Bb ,但是不可能有其他解,解的个数是0或1。
如果逆存在的话,他们最简单的形式如下:
确定的是
BA=I,AC=I
,但是不确定的事
ATA,AAT
是否可逆,我会在之后的文章中证明
ATA
在秩为
n
时是可逆的,
例2:考虑一个秩为2的
因为
r=m=2
,定理保证存在右逆
C
:
存在很多右逆,因为
C
的最后一行可任意赋值,只是存在但不唯一的情况。就好着呢
这是一个伪逆——我会在后面的文章详细介绍,
A
的转置有无限多个左逆:
现在
B
的最后一列可任意赋值,最好的左逆(也叫做伪逆)是
长方形矩阵不可能既满足存在性又满足唯一性,如果
m
与
方阵正好相反,如果 m=n ,那么它存在左逆的话肯定存在右逆,只可能有一个逆,即 B=C=A−1 。当矩阵是方阵时,存在性暗示着唯一性而唯一性也暗示着存在性。可逆的条件就是满秩: r=m=n :
- 列生成 Rn ,所以 Ax=b 对每个 b 至少有一个解。
- 列是独立的,所以
Ax=0 只有一个解 x=0 。 -
A
的行生成
Rn 。 - 行是线性无关的。
- 可以完整的进行消元: PA=LDU ,有 n 个主元。
A 的行列式不等于零。- 零不是 A 的特征值。
ATA 是正定的
中间的一些概念后面会陆续给出,这里是为了说明这些条件互相都是等价的,他们都确保 A 是可逆的。
这里有一个典型的应用,对于
这个范德蒙矩阵是
秩为1的矩阵
最后考虑最容易的情况,也就是秩尽可能小(除了零矩阵,它的秩为0)。数学的一个基本主题是给定一个复杂的东西,如果将它变成一些简单的部分。对于线性代数来说,最简单的部分就是秩为1的矩阵:
每一行都是第一行的倍数,所以行空间是一维的。事实上,我们可以将矩阵写成一个列向量和一个行向量的乘积:
一个 4×1 矩阵和 1×3 矩阵相乘得到 4×3 矩阵,这个结果秩为1,同样的,列是同一列向量的倍数,列空间维数同样是 r=1 ,简化为一条线。
每个秩为1的矩阵都可以写成简化的形式 A=uvT 。行是向量 vT 的倍数,列是向量 u <script type="math/tex" id="MathJax-Element-26549">u</script>的倍数,行空间和列空间是一条直线——这就是最简单的情况。