漫步线性代数二十五——特征值和特征向量

之后的文章开始介绍线性代数的后半部分。线性代数的前半部分几乎都涉及到 Ax=b ,从现在起我们将通过化简矩阵(尽可能变成对角矩阵)来求解新问题 Ax=λx ,基本的步骤已经不是某行减去另一行的倍数:消元法会改变特征值,这不是我们需要的。

行列式是从 Ax=b Ax=λx 的过渡,对于这两种情况,行列式都给出了一个形式解:在 x=A1b 中得出克莱姆法则,而对于后一种情况,得出多项式 det(AλI) ,它的根就是行列式(所有的矩阵都是方阵;长方形矩阵的特征和行列式都是没有意义的)。如果 n=2,3 ,那么可以用行列式求解特征值,但而与较大的 n ,计算λ比求解 Ax=b 要难的多。

第一部是理解行列式用处有多大,他们的应用之一是求解常微分方程,我们假设读者不是微分方程的专家!只要知道 xn,sinx,ex 就足够了。这里给出一个例子,考虑两个方程的方程组:

dvdt=4v5w,v=8 at t=0,dwdt=2v3w,w=5 at t=0(1)

这是一个初值问题,在时刻 t=0 是给定了未知量的初始值 8,5 。现在的问题是求出 t>0 之后的 v(t),w(t)

这个方程组的矩阵形式比较容易,让 u(t) 表示未知量,初始值是 u0 ,系数矩阵是 A

u(t)=[v(t)w(t)],u(0)=[85],A=[4253]

这样的话方程组就变成我们要的向量方程:

dudt=Auu=u(0) at t=0(2)

这是该问题的基本叙述,注意它是一个一阶方程组,而且关于未知量是线性的,它的系数还是常量;矩阵 A 和时间无关。

我们如何求出u(t)呢?如果只有一个未知量,那么问题就很容易,我们得到的是一个数而不是向量方程:

dudt=auu=u(0) at t=0(3)

这个方程的解读者应该知道:

u(t)=eatu(0)(4)

在初始时刻 t=0 u 等于u(0),因为 e0=1 eat 的导数有一个因子 a ,使得du/dt=au,所以满足初始条件和方程。

注意时间变大之后 u 的行为。如果a>0,那么方程是不稳定的,如果 a=0 ,那么是中性稳定的,如果 a<0 ,方程稳定,这三种情况对应于因子 eat 趋于无穷,保持有界和零。如果 a 是一个复数,a=α+iβ,那么对于实部 α 使用同样的检验,虚部产生振荡 eiβt=cosβt+isinβt ,衰减还是增长取决于 eαt

单个方程已经见得有点多了,现在直接讨论方程组,寻找按指数方式依赖 t 的解:

v(t)=eλtyw(t)=eλtz(5)

或者用向量形式

u(t)=eλtx(6)

对微分方程 du/dt=Au 来说,关键点是:找出纯粹的指数解。将 v=eλty,w=eλtz 代入方程得:

λeλty=4eλty5eλtz

λeλty=2eλty3eλtz

每项都有公共因子 eλt ,可以将其消去这个消去的前提是假设两个未知量的指数 λ 相等,然后得到:
4y5z=λy2y3z=λz(7)

这就是特征方程,用矩阵的形式表示为 Ax=λx ,将 u=eλtx 代入 du/dt=Au 得到 λeλtx=Aeλtx ,消去因子 eλt 后得到:

Ax=λx(8)

现在我们得到了基本方程,它涉及到两个未知量 λ,x λ 是矩阵 A 的特征值,向量x是关于它的特征向量,我们的目标就是求出特征值和特征向量 λ,x 并使用它们。

Ax=λx 的解

注意 Ax=λx 是一个非线性方程,如果我们能找出 λ ,那么对 x 而言方程那就是线性的。事实上,我们能够用λIx代替 λx 并移到方程左边:

(AλI)x=0(9)

单位矩阵是为了保存矩阵和向量的记法;方程 (Aλ)x=0 虽然简单,但是容易混淆。问题的关键点是:

向量 x AλI的零空间里。
我们选择的 λ 需要使 AλI 存在一个零空间。

当然每个矩阵都有一个零空间,因为向量 x=0 恒满足 Ax=λx ,但是在求解微分方程中它是没有用的,我们的目标是建立形如指数形式 eλtx 的解,所以只对那些非零向量 x 的特殊值λ感兴趣。为了存在这样的解, AλI 必须包含非零向量,简而言之, AλI 必须是奇异的。

为此,行列式给出了一个确切的检验方法。

1、 λ A 的一个特征值,当且仅当AλI是奇异的:

det(AλI)=0(10)

这个方程是特征方程,每个 λ 都关联一个特征向量 x :

(AλI)x=0orAx=λx(11)

在我们的例子中,我们用 λI A 做变换使其变成奇异的:

AλI=[4λ253λ]

注意 λ 只与对角线上的元素进行相减(因为它乘以单位矩阵 I )。

|AλI|=(4λ)(3λ)+10orλ2λ2

这是特征多项式,令行列式等于0得到的根就是特征值,可以利用平常的二次方程求解,或者因式分解 λ2λ2=(λ+1)(λ2) ,如果 λ=1 或者 λ=2 ,方程等于零,这个结果和二次根通式一样:

λ=b±b24ac2a=1±92=1and 2

因为二次方程有两个根,所以就有两个特征值,每个 2×2 矩阵 AλI 的行列式中都是 λ2 (没有更高的 λ 幂次了)。

λ=1 λ=2 Ax=λx 或者 (AλI)x=0 的解,如果矩阵是奇异的,那么在它的零空间中肯定存在非零向量 x 。事实上,零空间包含特征向量的所在的整条线;它就是一个子空间!

λ1=1:(Aλ1I)x=[5252][yz]=[00]

方程的解(第一个特征值)就是 x1 的非零倍数:

x1=[11]

同样的可以得到 λ2 的计算结果:

λ2=2:(Aλ1I)x=[2255][yz]=[00]

第二个特征值就是 x2 的非零倍数:

x2=[52]

读者可能注意到 Aλ1I 的列就是 x2 Aλ2I 的列就是 x1 ,这是 2×2 矩阵的特例(这个特点是很有用的)。

对于 3×3 的情况,我经常令 x 的一个元素为1,然后求解AλI=0得到其他元素。当然如果 x 是一个特征值,那么7x也是, x 也是。所以在 AλI 零空间里的向量满足 Ax=λx ,在我们的例子中特征空间及时通过 x1=(1,1),x2=(5,2) 的直线。

现在回到应用上(也就是微分方程),首先先强调一下求解 Ax=λx 的步骤:

  1. 计算 AλI 的行列式。沿对角线减去 λ ,行列式是一个 n 阶多项式,第一项是(λ)n
  2. 找出多项式的根。这 n 个根是A的特征值。
  3. 对于每个特征值,求解 (AλI)x=0 。因为行列式为零,所以除了 x=0 外还有解,这些解就是特征向量。

在微分方程中,有一个特解 u=eλtx ,对于 du/dt=Au 来说,这些是纯指数解,注意 et,e2t

u(t)=eλ1tx1=et[11]u(t)=eλ2tx2=e2t[52]

这两个特解给出了完整解,他们可以用任何数 c1,c2 相乘然后加到一起。当 u1,u2 满足线性方程 du/dt=Au 时,他们的和 u1+u2 同样满足:

u(t)=c1eλ1tx1+c2eλ2tx2(12)

这是叠加操作,它应用到微分方程上就像应用到矩阵方程 Ax=0 上一样,零空间始终那是一个子空间,解的组合依然是解。

现在我们有两个自由参数 c1,c2 ,通过初试条件 u=u(0) 可以求出他们:

c1x1+c2x2=u(0)or[1152][c1c2]=[85](13)

解的 c1=3,c2=1 ,原始方程的解是:

u(t)=3et[11]+e2t[52](14)

将两部分写开的:

v(t)=3et+5e2t,wt=3et+2e2t

关键在于特征值 λ 和特征向量 x ,特征值本身非常重要,而不仅仅是求出u的一部分技巧。大概最简单的例子就是士兵过桥了。传统上,他们停止齐步走,原因是齐步走的频率可能等于桥的某个特征值,从而可能是桥坍塌。(就像小孩子荡秋千;一旦注意到秋千的频率,通过匹配这个频率,小孩就能荡的更高)工程师总是试图让桥或火箭的频率远离风或液体燃料的频率,在另一种极端情况下,证券经纪人花费一生达到市场的自然频率,特征值几乎是任何动力系统最重要的的特征。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值