漫步数学分析番外三

1 ARn ,那么下面的条件是等价的:

(i) A 是闭的且有界。
(ii) A 的每个开覆盖有一个有限的子覆盖。
(iii) A 中的每个序列都有一个收敛的子序列,且收敛到A中的点。
(ii) 所有满足有限交性质的一系列闭集都有一个包含 A 的非空交集。
\end{enumerate}

我们先证明 (i)(ii)(iii)(i) ,然后证明 (ii)(ii) 。首先,我们展示 (i)(ii) ,直接证明比较困难,所以我们先从特殊情况开始。

1 对于 R 中的闭区间[a,b],海涅-博雷尔性质(ii)成立。

u={Ui} 是[a,b]的开覆盖,定义 A={x[a,b]|[a,x] Ui } ,我们想说明 A=[a,b] 。为此我们令 c=sup(A) ,因为 A ( aA )且 A 是有界的,所以sup是存在的,另外因为[a,b]是闭的, c[a,b] 。假设 cUi0 ;因为一系列 Ui 覆盖[a,b],所以这样的 Ui0 是存在的。因为 Ui0 是开的,所以存在一个 ε>0 ,使得 (cε,c+ε)Ui0 。因为 c=sup(A) ,存在一个 xA 使得 cε<xc 。因为 xA ,所以[a,x]有一个有限子覆盖, U1,,UN ;那么 [a,c+ε/2] 也有有限的子覆盖 U1,,UN,Ui0 ,因此我们得出 cA ,进一步 c=b 。事实上,如果 c<b ,在 A 中我们将会得到比c大的元素,因为 [a,c+ε/2] 有一个有限子覆盖。因为 c=sup(A) 所以后者不可能发生。 ||

为什么对于 (a,b],(a,b),[a,) 不成立呢?

2 如果 ARn 是紧集并且 x0Rm ,那么 A×{x0} 是紧集。

u A×{x0}是开覆盖并且 v={V|V={y|(y,x0)U},Uu} ,那么 v Rn A 的开覆盖,所以v A 的有限子覆盖,v={V1,,Vk},每个 Viv 对应 Uiu ,那么 u={U1,,Uk} A×{x0} u 的有限子覆盖。||

3 如果 [R,R]n1Rn1 有海涅-博雷尔性质,那么 [R,R]nRn 有海涅-博雷尔性质,其中 [R,R]n=[R,R]××[R,R],n 次乘法。

假设 [R,R]n1 有海涅-博雷尔性质并且 u [R,R]n的开覆盖,令 S={x[R,R]|[R,R]n1×[R,x]u} ,因为根据假设 [R,R]n1 满足条件 (ii) ,所以 RS ,那么由引理2可知 [R,R]n1×{R} u 中有一个有限的子覆盖。另外,S是有界的,所以 S 有最小上界我们用x0表示,我们将说明 x0=R ,这样的就证明了引理。

uu [R,R]n1×{x0} 是有限子覆盖,对于每个 (y,x0)[R,R]n1×{x0} ,存在一个 εy>0 使得 D((y,x0),2εy) u 覆盖。但是 Vy=D(y,εy)×(x0εy,x0+εy)D((y,x0),2εy ,所以 Vy u 覆盖。考虑 [R,R]n1×{x0} 的开覆盖 v={Vy|y[R,R]n1} ,根据引理2, v 有一个[R,R]n1×{x0}的有限子覆盖,表示成 {Vy1,,VyN} ,令 ε=inf{εy1,,εyN} ,那么 [R,R]n1×(x0ε,x0+ε)Ni=1Vyi ,因此 [R,R]n1×(x0ε,x0+ε) u 覆盖。

接下来对于这个 ε ,存在一个 xS 使得 x0ε<xx0 。因为 xS ,存在一个有限的子覆盖 u′′u ,它覆盖 [R,R]n1×[R,x] 并且 uu′′ [R,R]n1×[R,x0+ε) 的有限覆盖,那么 x0S 。假设 x0<R ,那么选择 δ 使得 x0+δ<R,x0+δ<x0+ε ,因此 [R,R]n1×[R,x0+δ] u′′ 覆盖,且 x0+δS ,得出矛盾,所以 x0R ||

4 如果 A 满足条件(ii) B 是闭的且BA,那么 B 也满足(ii)

{Ui} B 的一个开覆盖,令V=RnB,那么 {Ui,V} A 的开覆盖。如果{U1,,UN,V} A 的有限子覆盖,那么{U1,,UN} B 的有限子覆盖。||

定理1证明 (i)(ii) :因为 A 是有界的,它位于某个超立方体[R,Rn]中。由引理3以及 n 上的归纳法可知,这个超立方体满足(ii)。 有引理4,因为 A 是闭的,所以A也是条件 (ii) ||

定理1证明 (ii)(iii) :假设序列 xkA 没有收敛的子序列。特别地,这就意味着 xk 有无限个不同的点,我们用 y1,y2, 表示,因为没有收敛的子序列,那么 yk 有一个邻域 Uk 不包含其他的 yj ,这是因为如果 yk 的每个邻域含于其他的 yj 中,那么我们就可以选择一个收敛到 yk 的子序列(通过选择邻域 D(yk,1/m),m=1,2, )。另外,集合 y1,y2, 是闭的。事实上根据没有收敛的子序列这个假设可知,序列是没有聚点的。接下来,根据上面的引理3, {y1,y2,} 满足 (ii) ,但是 {Uk} 是没有有限子覆盖的开覆盖,矛盾,所以 xk 是一个收敛的子序列。要说明极限在 A 中等价于说明A是闭的,对于此证明这里从略。

定理1证明 (iii)(i) :首先,我们说明 A 是闭的。考虑一个序列xkx,其中 xkA ,根据 (iii) ,极限位于 A 中,所以A是闭的。

接下来,我们证明 A 是有界的。假设A是无界的,那么存在点 xkA 满足 xkk ,其中 k=1,2,3, ,这表明序列 xk 没有任何收敛的子序列,因为如果 y 是极限点的话,y=limkxk=,如果 yRn 的话,这是不可能发生的。 ||

定理1证明 (ii)(ii) :首先我们证明 (ii)(ii) ,令 {Fl} 是一组闭集, Ul=RnFl ,假设 A(l=1Fl)= ,那么取补,这就意味着 Ul 覆盖 A ,这是一个开覆盖,根据假设(ii)可知有一个有限的子覆盖,我们用 AU1UN 表示,那么 A(F1FN)= ,所以 {Fl} 没有有限交的性质,那么如果 {Fl} 是满足有限交的一组闭集,那么 A{Fl}=

最后,我们展示 (ii)(ii) 。事实上,令 {Ul} A 的开覆盖并且令Fl=RnUl,那么 A(lFl)= ,根据 (ii) {Fl} 对于 A 而言没有有限交的性质,因此对于某些F1,,FN,A(F1FN=),所以 U1,,UN 是所求的有限子覆盖。 ||

2 Fk Rn 中非空紧集的一个序列,且对于所有的 k=1,2, 满足 Fk+1Fk ,那么 k=1

观察紧集 A=F1 ,集合 F1,F2, 有有限交的性质。事实上,任何有限个的交等于下标最大的 Fk ,因为对于紧集而言 (ii) 成立,所以我们有

F1(k=1Fk)=k=1{Fk}||

3 如果集合 A 是路径连通的,那么A是连集。

我们首先证明一种特殊情况。

5 区间[a,b]是连集。

假设区间不是连集,那么存在两个开区间 U,V ,满足 U[a,b],V[a,b],[a,b]UV=,[a,b]UV 。进一步,假设 bV ,令 c=sup(U[a,b]) ,因为这个集合有上界所以最小上界一定存在。接下里 U[a,b] 是闭的,因为他的补是 V(R[a,b]) (这个集合是开的),所以 cU[a,b] 。接下里 cb ,因为 cV,bV 。因为 cb ,且由于 c=sup(U[a,b]) c 没有邻域完全含于U中,所以 c 的任何邻域与V[a,b]相交,这样的话 c V[a,b]的一个聚点。但是同理, V[a,b] 是闭,所以 cV[a,b] ,这与事实 VU[a,b]= 相矛盾。 ||

定理3的证明:假设 A 不是连集,那么根据定义,存在开集U,V使得 AUV,AUV=,UA,VA 。选择 xUA,yVA ,因为 A 是路径连续的,那么A中存在一个连接 x,y 的路径 φ:[a,b]Rn ,令 U0=φ1(U),V0=φ1(V) ,所以 U0,V0[a,b] 。接下里 U0 是闭的,因为如果我们令 tkt ,其中 tkU0 ,那么根据 φ 的连续性 φ(tk)φ(t) ;但是因为 V 是开集,φ(t)V或者对于较大的 k 来说φ(tk)V。因此 φ(t)UA 或者 tU0 。那么 U0 是闭集。同样的, V0 是闭集。令 U=(,a)(RV0) 并且 V=(b,)(RU0) (开集),观察可知 U[a,b],V[a,b],UV=,UV[a,b] ,所以 [a,b] 不是连集,与引理5矛盾。 ||

1 说明 A={xRn|x1} 是紧集并且还是连集。

为了说明 A 是紧集,我们需要说明它是闭的且有界。为了说明闭,考虑RnA={xRn|x>1}=B。对于 xB D(x,x1)B ,所以 B 是开集,因此A是闭集。因为 AD(0,2) ,所以很明显 A 是有界的,故A是紧集。

为了说明 A 是连集,我们说明A是路径连续的。令 x,yA ,那么连接 x,y 的直线就是要求的路径。用 φ:[0,1]Rn,φ(t)=(1t)x+ty 。 根据三角不等式可以看出 φ(t)(1t)x+ty(1t)+t=1 ,所以 φ(t)A

2 ARn,xA,yRnA ,令 φ:[0,1]Rn 是连接 x,y 的路径,说明存在一个 t 使得φ(t)bd(A)

直观上来说,这个结论表明连接集合与其补的路径肯定穿过边界,如图1所示。

B={x[0,1]|φ([0,x])A}[0,1] ,因为 0B ,所以 B 。 令 t=sup(B) ,我们将说明 φ(t)bd(A) 。 令 U φ(t)的一个邻域,选择 tk[0,t],tkt 使得 φ(tk)A ,根据 B 的定义可知这是完全可以的,因此由φ的连续性可知对充分大的 k,φ(tk)U 。根据 t 的定义,有一个点sk满足 tskt+1/k 并且 φ(sk)A 。接下里 skt 时,根据 φ 的连续性, k 充分大时φ(sk)U,所以 U 包含A,RnA中的点,因此 φ(t)bd(A)

3 证明:集合 AR 是连集,当且仅当它是一个区间——一个区间就是形如 [a,b],[a,b),(a,b],(a,b) 的集合,其中以开区间的端点处 a,b 可以是 ±

我们已经知道区间是连集,因为他们是路径连续的。现在反过来,假设 A 不是一个区间,我们将说明它不是连集。A不是区间意味着存在点 x,y,z 满足 x<y<z;x,zA,yA 。那么 U=(,y),V=(y,) 是开集合,满足 AUV,UVA=,UA,VA ,所以 A <script type="math/tex" id="MathJax-Element-9067">A</script>不是连集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值