漫步数学分析番外六(上)

1 A Rn中的开集并且假设 f:ARm x0 处可微,那么 Df(x0) 是由 f 唯一确定。

L1,L2 是满足定义1的两个线性映射,我们必须说明 L1=L2 。固定 eRn,e=1 ,对 λR x=x0+λe ,那么注意

|λ|=xx0L1eL2e=L1λeL2λe|λ|

因为 A 是开集,所以λ充分小时 xA ,根据三角不等式

L1eL2e=L1(xx0)L2(xx0)xx0f(x)f(x0)L1(xx0)xx0+f(x)f(x0)L2(xx0)xx0

λ0 时,上式的两项均 0 ,所以 L1e=L2e 。 除了 e=1 e 的选择是任意的,但是对任意yRn,y/y=e长度为1,利用线性可知,如果 L1(e)=L2(e) ,那么 L1(y)=L2(y) ||

2 假设 ARn 是一个开集并且 f:ARm 是可微的,那么偏微分 fj/xi 存在且线性映射 Df(x) 对于 Rn,Rm 中标准基的矩阵为

f1x1f2x1fmx1f1x2f2x2fmx2f1xnf2xnfmxn

其中每个偏导数都是在 x=(x1,,xn) 处计算出来的。

根据线性映射矩阵的定义, Df(x) 的第 ji 个矩阵元素是向量 Df(x)ei 的第 j 个元素,也就是Df(x)作用到第 i 个标准基ei上,我们称为 aji 。 接下来令 y=x+hei ,其中 hR ,注意

f(y)f(x)Df(x)(yx)yx=f(x1,,xi+h,,xn)f(x1,,xn)hDf(x)ei|h|

因为当 h0 时上面的式子 0 ,所以分子的第 j 个元素同样如此,这就意味着当h0

|fj(x1,,xi+h,,xn)fj(x1,,xn)haji||h|0

因此我们有

aji=limh0[fj(x1,,xi+h,xn)fj(x1,,xn)]h=fjxi||

3 假设 ARn 是开集且 f:ARm A 上可微,那么f是连续的。事实上,对于每个 x0A 存在一个常数 M>0,δ0>0 使得 xx0<δ0 意味着 f(x)f(x0)Mxx0 。(这就是利普希茨(Lipschitz)性质)

为了证明这个定理,我们回忆一下,如果 L:RnRm 是一个线性变化,那么存在一个常数 M0 使得对所有的 xRn 不等式 LxM0x ,因此我们取 L=Df(x0)

为了证明连续性,只要证明利普希茨性质即可,对给定的 ε>0 ,我们可以选择 δ=min(δ0,ε/M) 。为此我们令定义1 中的 ε=1 ,那么存在一个 δ0 使得 xx0<δ0 意味着

f(x)f(x0)Df(x0)(xx0)xx0

变换一下得

f(x)f(x0)Df(x0)(xx0)+xx0

(这里我们使用了三角不等式 yzyz ,这要对 y=(yz)+z 应用通常的三角不等式即可得出该结果)。令 M=M0+1 并利用事实 Df(x0)(xx0)M0xx0 得出结论。 ||

4 ARn 是一个开集, f:ARnRm ,假设 f=(f1,,fm) 。如果每个偏导 fj/xj 存在且在 A 上连续,那么f A 上可微。

如果 Df(x) 存在,那么它的矩阵表示就是定理2 中的雅克比矩阵,从而我们需要说明当 xA 固定,对于任意的 ε>0 ,存在 δ>0 使得 yx<δ,yA 意味着

f(y)f(x)Df(x)(yx)<εyx

为此,只要证明 f 中每个元素满足即可,因此我们假设m=1

我们可以写成 f(y)f(x)=f(y1,,yn)f(x1,y2,,yn)+f(x1,y2,,yn)f(x1,x2,y3,,yn)+f(x1,x2,y3,,yn)f(x1,x2,x3,y4,,yn)++f(x1,,xn1,yn)f(x1,,xn) ,接下来我们利用均值定理,在 x1,y1 ( y2,,yn 固定)之间存在 u1 使得 f(y1,,yn)f(x1,y2,,yn)=f/x1(u1,y2,,yn)(y1x1) ,对于其他项我们可以写出同样的表达式从而得到

f(y)f(x)=(fx1(u1,y2,,yn))(y1x1)+(fx2(x1,u2,,yn))(y2x2)++(fx1(x1,x2,,xn1,un))(ynxn)

那么因为 Df(x)(yx)=Σni=1fxi(x1,,xn)(yixi) ,所以

f(y)f(x)Df(x)(yx){fx1(u1,y2,,yn)fx1(x1,,xn)++fxn(x1,,xn1,un)fxn(x1,,xn)}yx

其中利用了三角不等于以及事实 |yixi|yx 。但是 f/xi 是连续的并且 ui 位于 yi,xi 之间,所以存在 δ>0 使得大括号中的项在 yx<δ 时小于 ε ,这就证明了断言。 ||

5 f:ARm 在开集 ARn 上是可微的, g:BRp 在开集 BRm 上是可微的,假设 f(A)B ,那么复合函数(composite) gf A 上是可微的且D(gf)(x0)=Dg(f(x0))Df(x0)

为了说明 D(gf)(x0)y=Dg(f(x0))(Df(x0)y) ,我们想说明

limxx0gf(x)gf(x0)Dg(f(x0))(Df(x0)(xx0))xx0=0

为此估计一下分子:

gf(x)gf(x0)Dg(f(x0))(Df(x0)(xx0))=g(f(x))g(f(x0))Dg(f(x0))(f(x)f(x0))+Dg(f(x0))(f(x)f(x0)Df(x0)(xx0))g(f(x))g(f(x0))Dg(f(x0))(f(x)f(x0))+Dg(f(x0))(f(x)f(x0)Df(x0)(xx0))

因为 f 是可微的,所以根据定理3存在δ0,M>0 使得 xx0<δ0 f(x)f(x0)M 。接下来给定 ε>0 ,根据导数的定义,存在 δ1>0 使得 yf(x0)<δ1 意味着

g(y)g(f(x0))Dg(f(x0))(yf(x0))<(ε2M)yf(x0)

从而 xx0<δ2=min{δ0,δ1} 意味着

g(f(x))g(f(x0))Dg(f(x0))(f(x)f(x0))xx0<ε2

因为 Dg(f(x0)) 是一个线性映射,所以我们知道存在一个常数 M~ 使得对所有的 yRm,Dg(f(x0))(y)M~y ,其中可以假设 M~0 。接下里根据导数的定义存在 δ3>0 使得 xx0<δ3 意味着

f(x)f(x0)Df(x0)(xx0)xx0<ε2M~

那么 xx0<δ3 意味着

Dg(f(x0))(f(x)f(x0)Df(x0)(xx0))xx0M~f(x)f(x0)Df(x0)(xx0)xx0<ε2

δ=min{δ2,δ3} ,那么 xx0<δ 意味着
gf(x)gf(x0)Dg(f(x0))Df(x0)(xx0)xx0g(f(x))g(f(x0))Dg(f(x0))(f(x)f(x0))xx0+Dg(f(x0))(f(x)f(x0)Df(x0)(xx0))xx0<ε2+ε2=ε

证毕。 ||

6 ARn 是开集, f:ARm,g:AR 是可微函数,那么 gf 是可微的并且对于 xA,D(gf)(x):RnRm D(gf)(x)e=g(x)(Df(x)e)+(Dg(x)e)f(x) ,对所有的 eRn 均如此。

给定 ε>0,x0A ,选择 δ>0 使得 xx0<δ 意味着

  1. |g(x)||g(x0)|+1=M ;
  2. f(x)f(x0)Df(x0)(xx0)ε3Mxx0 ;
  3. g(x)g(x0)Dg(x0)(xx0)ε3f(x0)xx0 ;
  4. g(x)g(x0)ε3M

其中 Df(x0)yMy (如果 f(x0)=0,Df(x0) ,那么只需要 (iii),(iv) 即可)

那么对于 xx0<δ ,利用三角不等式得

g(x)f(x)g(x0)f(x0)g(x0)Df(x0)(xx0)[Dg(x0)(xx0)]f(x0)g(x)f(x)g(x)f(x0)g(x)Df(x0)(xx0)+g(x)Df(x0)(xx0)g(x0)Df(x0)(xx0)+g(x)f(x0)g(x0)f(x0)[Dg(x0)(xx0)]Mεxx03M+ε3MMxx0+εxx03f(x0)f(x0)=εxx0.||

7
(i) 假设 f:ARnR 在开集 A 上可微,对于使得x,y 之间的线段位于 A 中的任意x,yA,存在点 c 位于那条线段上使得

f(y)f(x)=Df(c)(yx)

(ii) 假设 f:ARnRm 在开集 A 上可微,假设连接x,y的线段位于 A 中并且f=(f1,,fm),那么在那条线段上存在点 c1,,cm 使得

fi(y)fi(x)=Dfi(ci)(yx),i=1,,m

(i) 考虑函数 h:[0,1]R ,定义为 h(t)=f((1t)x+ty) ,函数 h (0,1)上对 t 可微,那么根据均值定理,存在t0(0,1)使得 h(1)h(0)=h(t0)(10) ,现在 h(1)=f(y),h(0)=f(x) 。利用链式法则求微分可得 h(t0)=Df((1t0)x+t0y)(yx) ,其中 (1t)x+ty t 的导数是yx,从而我们可以取 c=(1t0)x+t0y

(ii) f 的每个元素分别应用(i) 即可。 ||

8 f:ARnR 在开集 A 上二阶可导,那么D2f(x):Rn×RnR对于标准基的矩阵为

2fx1x12fxnx12fx1xn2fxnxn

其中每个偏微分都是在点 x=(x1,,xn) 处进行计算。

Df:ARn 的矩阵表示由行向量 (f/x1,,f/xn) 给出,那么根据定理2, D2f:ARn2

2fx1x12fxnx12fx1x22fxnx22fx1xn2fxnxn

证毕。 ||

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值