漫步数理统计十三——特殊的期望

某些期望有特殊的名字与符号表示。首先 X 表示离散随机变量,pmf为p(x),那么

E(X)=xxp(x)

如果 X 的支撑为{a1,a2,a3,},那么

E(X)=a1p(a1)+a2p(a2)+a3p(a3)+

这个乘积和是加权平均,权值 a1,a2,a3, 将每个 ai p(ai) 联系起来,这表明我们可以称 E(X) X 的算术均值或者更简单点X的均值。

1 (均值) X 是随机变量,且期望存在,X的均值 μ 定义为 μ=E(X)

均值是随机变量的一阶矩(关于0),另一个特殊的期望涉及到二阶矩,令 X 是离散随机变量,支撑为{a1,a2,},pmf为 p(x) ,那么

E[(Xμ)2]=x(xμ)2p(x)=(a1μ)2p(a1)+(a2μ)2p(a2)+

这个乘积和可以看成 a1,a2, 与均值 μ 差值平方的加权平均,也可以当成 X 关于μ的二阶矩,它是非常重要的期望,我们通常称为方差。

2 (方差) X 是随机变量,均值μ为有限值且使得 E[(Xμ)2] ,那么 X 的方差定义为E[(Xμ)2],通常用 σ2 Var(X) 表示。

仔细观察 Var(X) 会发现

σ2=E[(Xμ)2]=E(X22μX+μ2)

并且因为 E 是线性运算,

σ2=E(X2)2μE(X)+μ2=E(X2)2μ2+μ2=E(X2)μ2

这为计算 X 方差提供了很简单的方式。

习惯上称σ X 的标准差(或者分布的标准差),σ有时也为解释为空间中的点相对均值 μ 的分散程度,如果空间只包含一个点 k p(k)>0,那么 p(k)=1,μ=k,σ=0

1 令连续随机变量 X 的pdf为fX(x)=1/(2a),a<x<a,其余地方为零,使得 sigmaX=a/3 X 分布的标准差,接下来,令连续随机变量Y的pdf为 fY(y)=1/4a,2a<y<2a ,其余地方为零,使得 σY=2a/3 Y 分布的标准差。这里Y的标准差是 X 的两倍;这说明对于Y而言,其概率的扩散速度比 X 的概率快两倍。

接下来我们定义第三个特殊的期望。

3(矩生成函数(mgf))令 X 表示随机变量使得存在某个h>0 etX 的期望在 h<t<h 区间存在。 X 的矩生成函数定义为M(t)=E(etX) h<t<h ,我们用简写mgf表示随机变量的矩生成函数。

实际上我们需要的就是mgf在0的开区间内存在,当然这样的区间包含形如 (h,h) 的区间,其中 h>0 。进一步,如果我们令 t=0 ,那么显然 M(0)=1 。 但是注意对于存在的mgf,在0 的开区间内其必定存在。之后会看到,并非所有的分布都有mfg。

如果讨论几个随机变量的话,我们经常将 M 写成MX来表示 X 额mgf。

X,Y是有mgf的两个随机变量,如果 X,Y 有相同的分布,即对于所有的 z,FX(z)=FY(z) ,那么在0的邻域内 MX(t)=MY(t) ,但是mgf最重要的一个性质是这个命题反过来也成立。即mgf唯一确定一个分布,我们用一个定理描述这个命题,并用离散情况进行说明。

1 X,Y 是随机变量,他们的矩生成函数分别为 MX,MY ,在0的开区间内存在,那么对于所有的 zR,FX(z)=FY(z) ,当且仅当存在 h>0 使得对所有的 t(h,h) ,等式 MX(t)=MY(t) 成立。

因为这个定理非常重要,为了对其有更好的认识,考虑离散随机变量,例如对于所有的实值 t

M(t)=110et+210e2t+310e3t+410e4t

是离散随机变量 X 的mgf,如果令p(x)表示 X 的pmf,X的支撑为 {a1,a2,a3,} ,那么因为

M(t)=xetxp(x)

所以我们有

110et+210e2t+310e3t+410e4t=p(a1)ea1t+p(a2)ea2t+

因为上式对 t 的所有实值成立,所以右边应该由四项组成且互相与左边相等;因此我们取a1=1,p(a1)=110;a2=2,p(a2)=210;a3=3,p(a3)=310;a4=4,p(a4)=410,或者简单点, X 的pmf为

p(x)={x100x=1,2,3,4elsewhere

令一方面,假设 X 是连续随机变量,令

M(t)=11t,t<1

X 的mgf。那么

11t=etxf(x)dx,t<1

这里 f(x) 不太明显,然而我们知道pdf为

f(x)={ex00<x<elsewhere

的mgf为 M(t)=(1t)1,t<1 ,因此随机变量 X 存在满足这种pdf的分布与mgf的唯一性是一致的。

因为有mgfM(t)的分布完全由 M(t) 确定,所以我们从 M(t) 中直接得到一些分布的性质。例如对 h<t<h 而言 M(t) 的存在性意味着 M(t) t=0 处的各阶导均存在。另外,数学分析中的定理表明微分与积分(离散情况是求和)的顺序可以交换,即如果 X 是连续的,那么

M(t)=dM(t)dt=ddtetxf(x)dx=ddtetxf(x)dx=xetxf(x)dx

同样的,如果 X 是离散随机变量,那么

M(t)=dM(t)dt=xxetxp(x)

t=0 ,我们得到

M(0)=E(X)=μ

M(t) 的二阶导为

M′′(t)=x2etxf(x)dx or xx2etxp(x)

得到 M′′(0)=E(X2) 。因此 var(X) 等于

σ2=E(X2)μ2=M′′(0)[M(0)]2

例如如果 M(t)=(1t)1,t<1 ,利用上式

M(t)=(1t)2 M′′(t)=2(1t)3

那么

μ=M(0)=1, σ2=M′′(0)μ2=21=1

当然,我们可以用pdf计算 μ,σ2

μ=xf(x)dx, σ2=x2f(x)dxμ2

一般而言,如果 m 是一个正整数,M(m)(t)表示 M(t) m 阶导数,那么

M(m)(0)=E(Xm)

在力学上,

E(Xm)=xmf(x)dx or xxmf(x)

这种积分(或和)称为矩,因为 M(t) 生成 E(Xm),m=1,2,3, 的值,所以称其为矩生成函数(mgf)。事实上,有时候我们称 E(Xm) 为分布的 m 阶矩或者X m 阶矩。

1 X 的pdf为

f(x)={12(x+1)01<x<1elsewhere

那么 X 的均值为

μ=xf(x)dx=11xx+12dx=13

X 的方差为

σ2=x2f(x)dxμ2=11x2x+12dx(13)2=29

2 如果 X 的pdf为

f(x)={1x201<x<elsewhere

那么 X 的均值不存在,因为

{1|x|1x2dx=limbb11xdx=limb(logblog1)

不存在。

3 我们知道级数

112+122+132+

收敛到 π2/6 ,那么

p(x)={6π2x20x=1,2,3,elsewhere

是离散随机变量 X 的pmf,这个分布的mgf(如果存在的话)为

M(t)=E(etX)=xetxp(x)=x=16etxπ2x2

通过比值测试可知该级数在 t>0 时是发散的,所以不存在正数 h 使得h<t<h M(t) 存在。因此这个pmf为 p(x) 的分布没有mgf。

4 X 的mgf为M(t)=et2/2,<t<,我们可以对 M(t) 求任意次导得到 X 的矩,然而考虑其他方法是很有意义的。函数M(t)可以表示成下面的麦克劳林级数

et2/2=1+11!(t22)+12!(t22)2++1k!(t22)k+=1+12!t2+(3)(1)4!t4++(2k1)(3)(1)(2k)!t2k+

一般而言, M(t) 的麦克劳林级数为

M(t)=M(0)+M(0)1!t+M′′(0)2!t2++M(m)(0)m!tm+=1+E(X)1!t+E(X2)2!t2++E(Xm)m!tm+

因此在 M(t) 的麦克劳林级数表示中的系数为 E(Xm) ,从而我们有

E(X2k)=(2k1)(2k3)(3)(1)=(2k)!2kk!,k=1,2,3,E(X2k1)=0,k=1,2,3,

在之后的文章中我们会用着这个结论。

2 在高级课程中,我们一般不适用mgf,因为许多分布没有矩生成函数。然而,我们令 i 表示虚数单位,t是任意实数,我们将定义 φ(t)=E(eitX) ,对于每个分布这个期望均存在,称其为分布的特征函数。为了说明 φ(t) 对所有实数 t 存在,考虑其连续情况的绝对值

|φ(t)|=eitxf(x)dx|eitexf(x)|dx

然而,因为 f(x) 是非负的,所以 |f(x)|=f(x) ,并且

|eitx|=|costx+isintx|=cos2tx+sin2tx=1

因此

|φ(t)|f(x)dx=1

φ(t) 对所有 t 的实数值均存在。对于离散情况,只需要将积分符号换成求和即可。

每个分布有一个唯一的特征函数;对每个特征函数,存在唯一一个与之对应的概率分布。如果X的分布存在一个特征函数 φ(t) ,例如如果 E(X),E(X2) 存在,他们分别由 iE(X)=φ(0),i2E(X2)=φ′′(0) 给出,熟悉复数函数的可能写成 φ(t)=M(it)

研究拉普拉斯与傅里叶变换的可能注意到这些变换之间与 M(t),φ(t) 有相似之处;这些变换的唯一性使得我们断言矩生成函数与特征函数是唯一的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值