某些期望有特殊的名字与符号表示。首先
X
表示离散随机变量,pmf为
如果
X
的支撑为
这个乘积和是加权平均,权值
a1,a2,a3,…
将每个
ai
与
p(ai)
联系起来,这表明我们可以称
E(X)
为
X
的算术均值或者更简单点
定义1:
(均值)
X
是随机变量,且期望存在,
均值是随机变量的一阶矩(关于0),另一个特殊的期望涉及到二阶矩,令
X
是离散随机变量,支撑为
这个乘积和可以看成
a1,a2,…
与均值
μ
差值平方的加权平均,也可以当成
X
关于
定义2:
(方差)
X
是随机变量,均值
仔细观察
Var(X)
会发现
并且因为
E
是线性运算,
这为计算 X 方差提供了很简单的方式。
习惯上称
注1:
令连续随机变量
X
的pdf为
接下来我们定义第三个特殊的期望。
实际上我们需要的就是mgf在0的开区间内存在,当然这样的区间包含形如 (−h,h) 的区间,其中 h>0 。进一步,如果我们令 t=0 ,那么显然 M(0)=1 。 但是注意对于存在的mgf,在0 的开区间内其必定存在。之后会看到,并非所有的分布都有mfg。
如果讨论几个随机变量的话,我们经常将
M
写成
令
定理1: 令 X,Y 是随机变量,他们的矩生成函数分别为 MX,MY ,在0的开区间内存在,那么对于所有的 z∈R,FX(z)=FY(z) ,当且仅当存在 h>0 使得对所有的 t∈(−h,h) ,等式 MX(t)=MY(t) 成立。
因为这个定理非常重要,为了对其有更好的认识,考虑离散随机变量,例如对于所有的实值
t
是离散随机变量
X
的mgf,如果令
所以我们有
因为上式对
t
的所有实值成立,所以右边应该由四项组成且互相与左边相等;因此我们取
令一方面,假设
X
是连续随机变量,令
是
X
的mgf。那么
这里
f(x)
不太明显,然而我们知道pdf为
的mgf为 M(t)=(1−t)−1,t<1 ,因此随机变量 X 存在满足这种pdf的分布与mgf的唯一性是一致的。
因为有mgf
同样的,如果
X
是离散随机变量,那么
令
t=0
,我们得到
M(t)
的二阶导为
得到
M′′(0)=E(X2)
。因此
var(X)
等于
例如如果
M(t)=(1−t)−1,t<1
,利用上式
那么
当然,我们可以用pdf计算
μ,σ2
一般而言,如果
m
是一个正整数,
在力学上,
这种积分(或和)称为矩,因为
M(t)
生成
E(Xm),m=1,2,3,…
的值,所以称其为矩生成函数(mgf)。事实上,有时候我们称
E(Xm)
为分布的
m
阶矩或者
那么
X
的均值为
而
X
的方差为
例2:
如果
X
的pdf为
那么
X
的均值不存在,因为
不存在。
例3:
我们知道级数
收敛到
π2/6
,那么
是离散随机变量
X
的pmf,这个分布的mgf(如果存在的话)为
通过比值测试可知该级数在
t>0
时是发散的,所以不存在正数
h
使得
例4:
令
X
的mgf为
一般而言,
M(t)
的麦克劳林级数为
因此在
M(t)
的麦克劳林级数表示中的系数为
E(Xm)
,从而我们有
在之后的文章中我们会用着这个结论。
注2:
在高级课程中,我们一般不适用mgf,因为许多分布没有矩生成函数。然而,我们令
i
表示虚数单位,
然而,因为
f(x)
是非负的,所以
|f(x)|=f(x)
,并且
因此
故 φ(t) 对所有 t 的实数值均存在。对于离散情况,只需要将积分符号换成求和即可。
每个分布有一个唯一的特征函数;对每个特征函数,存在唯一一个与之对应的概率分布。如果
研究拉普拉斯与傅里叶变换的可能注意到这些变换之间与 M(t),φ(t) 有相似之处;这些变换的唯一性使得我们断言矩生成函数与特征函数是唯一的。