漫步数理统计十五——两个随机变量的分布

接下里我们讨论两个随机变量的例子。连续掷三次硬币并考虑有序数对(前两次 H 的个数,三次中H的个数),其中 H,T 分别表示正面与反面,那么样本空间是 C={c:c=ci,i=1,2,,8} ,其中 c1 TTT c2 TTH c3 THT c4 HTT c5 THH c6 HTH c7 HHT c8 HHH ,令 X1 X2 是两个函数,使得 X1(c1)=X1(c2)=0,X1(c3)=X1(c4)=X1(c5)=X1(c6)=1,X1(c7)=X1(c8)=2 X2(c1)=0,X2(c2)=X2(c3)=X2(c4)=1,X2(c5)=X2(c6)=X2(c7)=2,X2(c8)=3
那么 X1,X2 是定义在样本空间 C 上的实值函数,从样本空间映射到有序数对空间

D={(0,0),(0,1),(1,1),(1,2),(2,2),(2,3)}

X1,X2 是定义在样本空间 C 上的两个随机变量,在本例中,这些随机变量的空间是二维集合 D ,它是二维欧几里得空间 R2 的子集,这里 (X1,X2) 是从 C D 的向量,现在我们形式化随机向量的定义。

1 (随机向量)给定一个样本空间为 C 的随机试验,考虑两个随机变量 X1,X2 ,对 C 中的每个元素c只分配一个有序数对 X1(c)=x1,X2(c)=x2 ,那么我们称 (X1,X2) 是一个随机向量。 (X1,X2) 的空间是有序数对 D={(x1,x2):x1=X1(c),x2=X2(c),cC} 的集合。

我们常用向量符号 X=(X1,X2) ,其中 表示行向量 (X1,X2) 的转置。

D 是随机向量 (X1,X2) 关联的空间, A D的一个子集,与随机变量一样我们称为事件 A ,我们想定义事件A的概率,用 PX1,X2[A] 表示,同样我们用累加分布函数(cdf)来定义 PX1,X2 ,那么对任意 (x1,x2)R2

FX1,X2(x1,x2)=P[{X1x}{X2x2}]

因为 X1,X2 是随机变量,所以上面相加事件中的每个事件都是原始样本空间 C 中的事件,因此上面的表达式是明确的。与随机变量一样,我们可以将 P[{X1x1}{X2x2}] 写成 P[X1x1,X2x2] ,并且

P[a1<X1b1,a2<X2b2]=FX1,X2(b1,b2)FX1,X2(a1,b2)FX1,X2(b1,a2)+FX1,X2(a1,a2)

因此所有形如 (a1,b1]×(a2,b2] 集合的概率可以用cdf的形式表述出来, R2 中这种形式的集合生成了 R2 子集的博莱尔 σ 域,cdf唯一地确定一个 R2 上的概率,我们常称这种cdf为 (X1,X2) 的联合累积分布函数。

与随机变量一样,我们主要关系两种类型的随机向量,即离散与连续,首先讨论离散情况。

随机向量 (X1,X2) ,如果它的空间 D 是有限的或可数的,那么我们称它是离散随机向量,因此 X1,X2 都是离散的,对于所有的 (x1,x2)D (X1,X2) 的联合概率质量函数(pmf)定义为

pX1,X2=P[X1=x1,X2=x2]

与随机变量一样,pmf唯一的确定cdf,它也可以用两个性质表征:

(i)0pX1,X2(x1,x2)1(ii)ΣΣDpX1,X2(x1,x2)=1

对于事件 BD ,我们有

P[(X1,X2)B]=BpX1,X2(x1,x2)

1 考虑定义在文章开头实例中的离散随机向量 (X1,X2) ,我们可以用下表表示其pmf:


这里写图片描述

表格横向的 0,1,2,3 表示 X2 的支撑,纵向 0,1,2 表示 X1 的支撑。

这样也便于叙述离散随机向量 (X1,X2) 的支撑,他们是 (X1,X2) 空间中使得 p(x1,x2)>0 的所有点 (x1,x2) ,上面的例子中支撑是由六个点 {(0,0),(0,1),(1,1),(1,2),(2,2),(2,3)} 组成的。

对于空间为 D 的随机向量 (X1,X2) ,如果它的cdf FX1,X2(x1,x2) 是连续的,那么我们称该随机向量是连续的。在以后的文章中,有cdf的连续随机向量用非负函数的积分表示,即对于所有的 (x1,x2)R2,FX1,X2(x1,x2) 可以表示成

FX1,X2(x1,x2)=x1x2fX1,X2(w1,w2)dw1dw2

我们称被积部分为 (X1,X2) 的联合概率密度函数(pdf),对于 fX1,X2(x1,x2) 连续的点,我们有

2FX1,X2(x1,x2)x1x2=fX1,X2(x1,x2)

pdf基本可有两个性质表征:

(i)fX1,X2(x1,x2)0(ii)DfX1,X2(x1,x2)dx1dx2=1

对于事件 AD ,我们有

P[(X1,X2)A]=AfX1,X2(x1,x2)dx1dx2

注意 P[(X1,X2)A] 仅仅是集合 A 上曲面z=fX1,X2(x1,x2)下方的体积。

与单随机变量一样,我们经常省略cdf,pdf与pmf中的下标 (X1,X2) ,我们也常用符号 f12 而不是 fX1,X2 。除了 (X1,X2) ,我们也常用 (X,Y) 表示随机向量。

2

f(x1,x2)={6x21x200<x1<1,0<x2<1elsewhere

是两个连续随机变量 X1,X2 的pdf,那么我们有

P(0<X1<34,13<X2<2)=21/33/40f(x1,x2)dx1dx2=11/33/406x21x2dx1dx2+213/400dx1dx2=38+0=38

注意这个概率是矩形集合 {(x1,x2):0<x1<34,13<x2<1}R2 上曲面 f(x1,x2)=6x21x2 下的体积。

对于连续随机向量 (X1,X2) (X1,X2) 的支撑包含所有 f(x1,x2)>0 的点,我们用 S 表示随机向量的支撑,与单变量一样 SD

对于 R2 上pdf fX1,X2(x1,x2) 的定义,我们通过将其他地方设为零进行扩展,这样的话就可以避免麻烦的 D ,这样的话我们就能将

DfX1,X2(x1,x2)dx1dx2

替换为

fX1,X2(x1,x2)dx1dx2

离散情况同样如此,可将

DpX1,X2(x1,x2)

替换为

x2x1pX1,X2(x1,x2)

最后如果一个或多个变量的pmf或者pdf已经显示的给定,那么通过观察就能看出随机变量是离散还是连续类型,例如显然

p(x,y)={94x+y0x=1,2,3,,y=1,2,3,elsewhere

是两个离散变量 X,Y 的pmf,而

f(x,y)={4xyex2y200<x<,0<y<elsewhere

显然是两个连续随机变量 X,Y 的pdf。

(X1,X2) 是随机向量,那么 X1,X2 每一个都是随机变量,我们用 (X1,X2) 的联合分布形式得到他们的分布,回忆一下定义在 x1 X1 cdf的事件是 {X1x1} ,然而

{X1x1}={X1x1}{<X2<}={X1x1,<X2<}

取概率得对于所有的 x1R

FX1(x1)=P[X1x1,<X2<]

将上式重写成 FX1(x1)=limx2F(x1,x2) ,由此我们得到cdf之间的关系,根据 (X1,X2) 是离散的或连续的,我们可以将其扩展到pmf或者pdf。

首先考虑离散情况,令 DX1 X1 的支撑,对于 x1DX1 ,上式等价于

FX1(x1)=w1x1<x2<pX1,X2(w1,x2)=w1x1x2<pX1,X2(w1,x2)

根据cdf的唯一性,括号中的量肯定是 X1 w1 处的pmf;即对于所有的 x1DX1

pX1(x1)=x2<pX1,X2(x1,x2)

注意,为了找出 X1 x1 的概率,保持 x1 不变然后在所有 x2 上求和 pX1,X2 ,如下表所示。表的最后一行是 X2 的pmf,最后一列是 X1 的pmf,一般而言,因为这些分布记录在表的边缘,所以我们常称他们为边缘pmf。


这里写图片描述

3 考虑一个随机试验,从包含10个同样大小球的盒子中随机抽一个球,每个球上标有数字对,一个为 (1,1) ,一个为 (2,1) ,两个为 (3,1) ,一个为 (1,2) ,两个为 (2,2) ,三个为 (3,2) 。令随机变量 X1,X2 分别表示有序对的第一个与第二个数,那么 X1,X2 的联合pmf p(x1,x2) 如下表所示,其中 p(x1,x2) 在其他地方等于零。


这里写图片描述

每行与每列的联合概率进行相加,这些边缘的和分别给出了 X1,X2 的边缘概率密度函数,注意为了求出他们我们没必要知道 p(x1,x2)

接下来考虑连续情况,令 DX1 表示 X1 的支持,对于 x1DX1

FX1=x1fX1,X2(w1,x2)dx2dw1=x1{fX1,X2(w1,x2)dx2}dw1

根据cdf的唯一性,括号中的量一定是 X1 w1 处的pdf;即对所有 x1D_{X_1}

fX1(x1)=fX1,X2(x1,x2)dx2

因此对于连续情况, X1 的pdf通过积分 x2 得到,同样的 x2 的pdf可以通过积分 x1 得到。

4 X1,X2 的联合pdf为

f(x1,x2)={x1+x200<x1<1, 0<x2<1elsewhere

X1 的边缘pdf为

f1(x1)=10(x1+x2)dx2=x1+12,0<x1<1

其他地方为零, X2 的边缘pdf为

f1(x1)=10(x1+x2)dx2=12+x2,0<x2<1

其他地方为零。像 P(X112) 的概率既可以从 f1(x1) 也可以从 f(x1,x2) 中计算得到,因为

1/2010f(x1,x2)dx2dx1=1/20f1(x1)dx1=38

然而为了求出像 P(X1+X21) ,我们必须用联合pdf f(x1,x2) ,如下所示:

101x10(x1+x2)dx2dx1=10[x1(1x1)+(1x1)22]dx1=10(1212x21)dx1=13

这个概率就是集合 {(x1,x2):0<x1,x1+x21} 上曲面 f(x1,x2)=x1+x2 下的体积。

(X1,X2) 是一个随机向量, Y=g(X1,X2) 是某个实值函数,即 g:R2R ,那么 Y 是一个随机变量且通过Y的分布可以确定它的期望。

假设 (X1,X2) 是连续类型,那么如果

|g(x1,x2)|fX1,X2(x1,x2)dx1dx2<

E(Y) 存在,

E(Y)=g(x1,x2)fX1,X2(x1,x2)dx1dx2

类似的,如果 (X1,X2) 是离散的,那么如果

x1x2|g(x1,x2)|pX1,X2(x1,x2)dx1dx2<

E(Y) 存在,

E(Y)=x1x2g(x1,x2)pX1,X2(x1,x2)dx1dx2

现在我们说明 E 是一个线性运算。

1 (X1,X2) 是一个随机向量, Y1=g1(X1,X2),Y2=g2(X1,X2) 是随机变量,其期望存在,那么对任意实数 k1,k2

E(k1Y1+k2Y2)=k1E(Y1)+k2E(Y2)

我们证明连续情况。 k1Y1+k2Y2 期望值的存在性直接从三角不等式以及积分的线性可以求出,即

|k1g1(x1,x2)+k2g1(x1,x2)|fX1,X2(x1,x2)dx1dx2|k1||g1(x1,x2)|fX1,X2(x1,x2)dx1dx2+|k2||g2(x1,x2)|fX1,X2(x1,x2)dx1dx2<

利用积分的线性可得

E(k1Y1+k2Y2)=[k1g1(x1,x2)+k2g2(x1,x2)]fX1,X2(x1,x2)dx1dx2=k1g1(x1,x2)fX1,X2(x1,x2)dx1dx2+k2g2(x1,x2)fX1,X2(x1,x2)dx1dx2=k1E(Y1)+k2E(Y2)

得证。

注意对于 X2 的任意函数 g(X2) 的期望可以通过两种方式得到:

E(g(X2))=g(x2)f(x1,x2)dx1dx2=g(x2)fX2(x2)dx2

最后的式子是通过先积分 x1 得到的,下面的例子说明了这个想法。

5 X1,X2 的pdf为

f(x1,x2)={8x1x200<x1<x2<1elsewhere

那么

E(X1X22)=x1x22f(x1,x2)dx1dx2=10x2)8x21x32dx1dx2=1083x62dx2=821

另外

E(X2)=10x20x2(8x1x2)dx1dx2=45

因为 X2 的pdf f2(x2)=4x32,,0<x2<1 ,其他地方为零,后者的期望可以用

E(X2)=10x2(4x32)dx2=45

求出,因此

E(7X1X22+5X2)=7E(X1X22)+5E(X2)=(7)(821)+(5)(45)=203

6 继续考虑例5,假设随机变量 Y 定义为Y=X1/X2,我们有两种方式确定 E(Y) 。第一种方式是用定义,即找到 Y 的分布,然后确定其期望。Y的cdf其中 0<y1

FY(y)=P(Yy)=P(X1yX2)=10yx208x1x2dx1dx2=104y2x32dx2=y2

因此 Y 的pdf为

fY(y)=FY(y)={2y00<y<1elsewhere

由此得出

E(Y)=1)y(2y)dy=23

对于第二种方法,我们直接求 E(Y)

E(Y)=E(X1X2)=10{x20(x1x28x1x2dx1)}dx2=1083x32dx2=23

接下来我们定义随机向量的矩生成函数。

2 (随机向量的矩生成函数)令 X=(X1,X2) 是一个随机向量,如果对于 |t1|<h1,|t2|<h2,E(et1X1+t2X2) 存在,其中 h1,h2 是正的,那么它可以用 MX1,X2(t1,t2) 表示且成为 X 的矩生成函数(mgf)。

与随机变量一样,如果它存在,那么随机向量的mgf唯一确定随机向量的分布。

t=(t1,t2) ,那么我们可以将 X 写成

MX1,X2(t)=E[etX]

所以它与随机变量很相似。另外 X1,X2 的mgf直接可以从 MX1,X2(t1,0),MX1,X2(0,t2) 得到,在不产生混淆的情况下,我们取消 M 上的下标。

7连续随机变量 X,Y 的联合pdf为

f(x,y)={ey00<x<y<elsewhere

这个联合分布的mgf是

M(t1,t2)=0xet1x+t2yydydx=1(1t1t2)(1t2)

假设 t1+t2<1,t2<1 。进一步, X,Y 边缘分布的矩生成函数分别是

M(t1,0)=11t1,t1<1M(0,t2)=1(1t2)2,t2<1

这些矩生成函数分别是边缘概率密度函数

f1(x)=xeydy=ex,0<x<

其余地方为零,与

f2(x)=eyy0dx=yey,0<y<

其余地方为零。

我们也需要定义随机向量自身的期望值,但是这不是一个新的概念,因为它用元素的期望形式进行定义:

3 (随机向量的期望值) X=(X1,X2) 是随机向量,那么如果 X1,X2 的期望存在,则 X 的期望值存在,期望值为

E[X]=[E(X1)E(X2)]

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值