两个随机变量的概念立即可以扩展到
n
个随机变量,下面就是
定义1:
考虑一个随机试验,其样本空间为
C
,随机变量
Xi
给每个元素
c∈C
只分配一个值
Xi(c)=xi,i=1,2,…,n
,我们说
(X1,…,Xn)
是一个
n
维随机向量,这个随机向量的空间就是有序
本篇文章我们将使用向量符号。例如我们用
n
维列向量
n
个随机变量
或者
对于连续情况
同样的扩展联合pdf的定义,可以看出如果
(a)
函数
f
有定义且其参数的所有值均为正,
例1:
令
是
随机变量
X,Y,Z
的pdf,那么
X,Y,Z
的分布函数为
其他地方等于零。
令
(X1,X2,…,Xn)
是随机向量,对某个函数
u
使得
存在,那么随机变量的期望存在。对离散型,如果
n
重和
存在,那么随机变量的期望存在。如果
Y
的期望值存在,那么对连续型,其等于
对离散型,其等于
前面讨论的期望值性质对
n
维情况也成立。特别地,
其中 k1,…,km 是常数。
接下来我们讨论
n
个随机变量的边缘与条件概率密度函数的概念,之前所有的定义可以直接推广到
其中
f1(x1)
为
n−1
元积分
因此 f1(x1) 是随机变量 X1 的pdf, f1(x1) 称为 X1 的边缘pdf, X2,…,Xn 的边缘概率密度函数 f2(x2),…,fn(xn) 分别为相似的 n−1 元积分。
目前为止,每个边缘pdf有一个单随机变量的pdf,这就很方便将其扩展到联合概率密度函数。令
f(x1,x2,…,xn)
是
n
个随机变量
这里假设随机变量是连续型的。
接下里我们扩展条件pdf的定义,假设
f1(x1)>0
,那么我们用关系
定义符号
f2…,xn|x1
。
f2…,xn|x1
称为给定
X1=x1,X2,…,Xn
的联合条件pdf,任何
n−1
个随机变量的联合条件pdf,假设为给定
Xi=xi
,
X1
,
…
,
Xi−1
,
Xi+1
,
…
,
Xn
,定义为
X1,…,Xn
的联合pdf除以
fi(xi)
的边缘pdf,其中
fi(xi)>0
。更一般的,给定
k
个随机变量,
因为条件pdf是某些随机变量的pdf,所以这些随机变量的函数期望值有定义。例如考虑连续情况,给定
X1=x1,u(X2,…,Xn)
的条件期望为
假设 f1(x1)>0 且积分收敛(绝对)。一个有用的随机变量为 h(X1)=E[u(X2,…,Xn)|X1] 。
上面讨论的边缘与条件分布同样可以推广到离散的情况,只需要将求和符号代替积分符号即可。
令随机变量
X1,X2,…,Xn
的联合pdf为
f(x1,x2,…,xn)
,边缘概率密度函数分别为
f1(x1),f2(x2),…,fn(xn)
。
X1,X2
独立的定义也可以推广到
X1,X2,…,Xn
的情况:对于连续型,随机变量
X1,X2,…,Xn
是互相独立的,当且仅当
对于离散型,当且仅当
假设
X1,X2,…,Xn
是互相独立的,那么
其中符号
∏ni=1φ(i)
定义为
对于独立随机变量
X1,X2
的
E[u(X1)v(X2)]=E[u(X1)E[v(X2)]
相对互相独立的随机变量
X1,X2,…,n
就变成
或者
n
个随机变量
存在,其期望用
M(t1,t2,…,tn)
表示并称为
X1,…,Xn
联合分布的mgf(或者简单称为
X1,…,Xn
的mgf)。与单个或两个变量一样,它的mgf 是唯一的且唯一决定
n
个变量的联合分布(因此对所有的边缘分布也如此)。例如
是
X1,X2,…,Xn
互相独立的充分必要条件,注意我们可以用向量符号量联合mgf写成
其中 B={t:−hi<ti<hi,i=1,…,n} 。
例2:
令
X1,X2,X3
是三个互相独立的随机变量并每个pdf为
X1,X2,X3
的联合pdf为
f(x1)f(x2)f(x3)=8x1x2x3,0<xi<1,i=1,2,3
,其余地方为零。为了说明,
5X1X32+3X2X43
的期望为
令
Y
是
利用相同的方式,我们可以计算出
Y
的cdf为
那么
Y
的pdf为
注1:
如果
X1,X2,X3
是互相独立的,那么他们是成对独立的(即
i≠j,Xi,Xj
就独立,其中
i,j=1,2,3
),然而,下面的例子说明成对独立不一定互相独立。令
X1,X2,X3
的联合pdf为
Xi,Xj,i≠j
的联合pdf为
其中
Xi
的边缘pmf为
很明显,如果
i≠j
,我们有
其中
Xi
的边缘pmf为
很明显,如果
i≠j
,我们有
因此
Xi,Xj
是独立的。然而
所以 X1,X2,X3 不是互相独立的。
除非互相与成对独立会产生误解,我们通常不用修饰语互相。因此当我们说 X1,X2,X3 是独立的随机变量时,指的是他们互相独立。偶尔为了强调,我们会使用互相独立,读者须知道互相与成对独立是有区别的。
另外,如果几个随机变量互相独立且有同样的分布,我们称他们为独立同分布,简写为iid。