漫步数理统计二十——多元随机变量

两个随机变量的概念立即可以扩展到 n 个随机变量,下面就是n个随机变量空间的定义。

1 考虑一个随机试验,其样本空间为 C ,随机变量 Xi 给每个元素 cC 只分配一个值 Xi(c)=xi,i=1,2,,n ,我们说 (X1,,Xn) 是一个 n 维随机向量,这个随机向量的空间就是有序n D={(x1,x2,,xn):x1=X1(c),,xn=Xn(c),cC} 的集合。进一步,令 A 是空间D的子集,则 P[(X1,,Xn)A]=P(C) ,其中 C={c:cC,(X1(c),X2(c),,Xn(c))A}

本篇文章我们将使用向量符号。例如我们用 n 维列向量X表示 (X1,,Xn) x 表示随机变量的观测值 (x1,,xn) ,联合cdf定义为

FX(x)=P[X1x1,,Xnxn]

n 个随机变量X1,X2,,Xn是离散型或者连续性,其联合cdf为

FX(x)=w1x1,,wnxnp(w1,,wn)

或者

FX(x)=w1x1,,wnxnf(w1,,wn)dw1dwn

对于连续情况

nx1xnFX(x)=f(x)

同样的扩展联合pdf的定义,可以看出如果 (a) 函数 f 有定义且其参数的所有值均为正,(b)其在参数上所有值的积分为1,那么该函数基本满足成为pdf的条件。同样的如果 (a) 函数 p 有定义且其参数上所有值均为正,(b)其在参数上所有值的求和为1,那么该函数基本满足成为pmf的条件。与之前的文章一样,有时为了方便我们说随机向量的支撑集,对于离散情况,就是在 D 中的所有点均有正的质量,而对于连续情况,就是 D 中所有点都能嵌入到正概率的开集中,我们将用 S 表示支撑集。

1

f(x,y,z)={e(x+y+z)00<x,y,z<elsewhere


随机变量 X,Y,Z 的pdf,那么 X,Y,Z 的分布函数为

F(x,y,z)=P(Xx,Yy,Zz)=z0y0x0euvwdudvdw=(1ex)(1ey)(1ez),0x,y,z

其他地方等于零。

(X1,X2,,Xn) 是随机向量,对某个函数 u 使得Y=u(X1,X2,,Xn),与二元变量一样,对连续型,如果 n 重积分

|u(x1,x2,,xn)|f(x1,x2,,xn)dx1dx2dxn

存在,那么随机变量的期望存在。对离散型,如果 n 重和

xnx1|u(x1,x2,,xn)|f(x1,x2,,xn)

存在,那么随机变量的期望存在。如果 Y 的期望值存在,那么对连续型,其等于

E(Y)=u(x1,x2,,xn)f(x1,x2,,xn)dx1dx2dxn

对离散型,其等于

E(Y)=xnx1|u(x1,x2,,xn)|f(x1,x2,,xn)

前面讨论的期望值性质对 n 维情况也成立。特别地,E是一个线性运算,即如果 Yj=uj(X1,,Xn),j=1,,m 且每个 E(Yi) 存在,那么

Ej=1mkjYj=j=1nkjE[Yj]

其中 k1,,km 是常数。

接下来我们讨论 n 个随机变量的边缘与条件概率密度函数的概念,之前所有的定义可以直接推广到n个变量的情况。令随机变量 X1,X2,,Xn 是连续型的,且联合pdf为 f(x1,x2,,xn) ,与两个变量的情况类似,对任意 b 我们有

FX1(b)=P(X1<b)=bf1(x1)dx1

其中 f1(x1) n1 元积分

f1(x1)=f(x1,x2,,xn)dx2dxn

因此 f1(x1) 是随机变量 X1 的pdf, f1(x1) 称为 X1 的边缘pdf, X2,,Xn 的边缘概率密度函数 f2(x2),,fn(xn) 分别为相似的 n1 元积分。

目前为止,每个边缘pdf有一个单随机变量的pdf,这就很方便将其扩展到联合概率密度函数。令 f(x1,x2,,xn) n 个随机变量X1,X2,,Xn的联合pdf,但是我们接下来考虑 k<n 个随机变量的联合pdf,例如取 n=6,k=3 ,我们选择 X2,X4,X5 ,那么 X2,X4,X5 的边缘pdf就是他们的联合pdf,即

f(x1,x2,x3,x4,x5,x6)dx1dx3dx6

这里假设随机变量是连续型的。

接下里我们扩展条件pdf的定义,假设 f1(x1)>0 ,那么我们用关系

f2,,n|1(x2,,xn|x1)=f(x1,x2,,xn)f1(x1)

定义符号 f2,xn|x1 f2,xn|x1 称为给定 X1=x1,X2,,Xn 的联合条件pdf,任何 n1 个随机变量的联合条件pdf,假设为给定 Xi=xi X1 Xi1 Xi+1 , Xn ,定义为 X1,,Xn 的联合pdf除以 fi(xi) 的边缘pdf,其中 fi(xi)>0 。更一般的,给定 k 个随机变量,nk个随机变量的联合边缘pdf定义为 n 个变量的联合pdf除以k个变量的边缘pdf,假设后者的pdf为正。

因为条件pdf是某些随机变量的pdf,所以这些随机变量的函数期望值有定义。例如考虑连续情况,给定 X1=x1,u(X2,,Xn) 的条件期望为

E[u(X2,,Xn)|x1]=u(x2,,xn)f2,,n|1(x2,,xn|x1)dx2dxn

假设 f1(x1)>0 且积分收敛(绝对)。一个有用的随机变量为 h(X1)=E[u(X2,,Xn)|X1]

上面讨论的边缘与条件分布同样可以推广到离散的情况,只需要将求和符号代替积分符号即可。

令随机变量 X1,X2,,Xn 的联合pdf为 f(x1,x2,,xn) ,边缘概率密度函数分别为 f1(x1),f2(x2),,fn(xn) X1,X2 独立的定义也可以推广到 X1,X2,,Xn 的情况:对于连续型,随机变量 X1,X2,,Xn 是互相独立的,当且仅当

f(x1,x2,,xn)f1(x1)f2(x2)fn(xn)

对于离散型,当且仅当

p(x1,x2,,xn)p1(x1)p2(x2)pn(xn)

假设 X1,X2,,Xn 是互相独立的,那么

P(a1<X1<b1,a2<X2<b2,,an<Xn<bn)=P(a1<X1<b1)P(a2<X2<b2)P(an<Xn<bn)=i=1nP(ai<Xi<bi)

其中符号 ni=1φ(i) 定义为

i=1nφ(i)=φ(1)φ(2)φ(n)

对于独立随机变量 X1,X2 E[u(X1)v(X2)]=E[u(X1)E[v(X2)] 相对互相独立的随机变量 X1,X2,,n 就变成

E[u1(X1)u2(X2)un(Xn)]=E[u1(X1)]E[u2(X2)]E[un(Xn)]

或者

E[i=1nui(Xi)]=i=1nE[ui(Xi)]

n 个随机变量X1,X2,,Xn联合分布的矩生成函数定义如下,对 hi<ti<hi,i=1,2, ,其中 hi 是正的,

E[exp(t1X1+t2X2++tnXn)]

存在,其期望用 M(t1,t2,,tn) 表示并称为 X1,,Xn 联合分布的mgf(或者简单称为 X1,,Xn 的mgf)。与单个或两个变量一样,它的mgf 是唯一的且唯一决定 n 个变量的联合分布(因此对所有的边缘分布也如此)。例如Xi的边缘分布mgf为 M(0,,0,ti,0,,0),i=1,2,,n Xi,Xj 的边缘分布mgf为 M(0,,0,ti,0,,0,tj,0,,0) ;等等。上篇文章的定理5可以进行推广,因式分解

M(t1,t2,,tn)=i=1nM(0,,0,ti,0,,0)

X1,X2,,Xn 互相独立的充分必要条件,注意我们可以用向量符号量联合mgf写成

M(t)=E[exp(tX)],tBRn

其中 B={t:hi<ti<hi,i=1,,n}

2 X1,X2,X3 是三个互相独立的随机变量并每个pdf为

f(x)={2x00<x<1elsewhere

X1,X2,X3 的联合pdf为 f(x1)f(x2)f(x3)=8x1x2x3,0<xi<1,i=1,2,3 ,其余地方为零。为了说明, 5X1X32+3X2X43 的期望为

101010(5x1x32+3x2x43)8x1x2x3dx1dx2dx3=2

Y X1,X2,X3的最大值,那么我们有

P(Y12)=P(X112,X212,X312)=1/201/201/208x1x2x3dx1dx2dx3=()6=164

利用相同的方式,我们可以计算出 Y 的cdf为

G(y)=P(Yy)=0y61y<00y<11y

那么 Y 的pdf为

g(y)={6y500<y<1elsewhere

1 如果 X1,X2,X3 是互相独立的,那么他们是成对独立的(即 ij,Xi,Xj 就独立,其中 i,j=1,2,3 ),然而,下面的例子说明成对独立不一定互相独立。令 X1,X2,X3 的联合pdf为

f(x1,x2,x3)={140(x1,x2,x3){(1,0,0),(0,1,0),(0,0,1),(1,1,1)}elsewhere

Xi,Xj,ij 的联合pdf为

fij(xi,xj)={140(xi,xj){(0,0),(1,0),(0,1),(1,1)}elsewhere

其中 Xi 的边缘pmf为

fi(xi)={120xi=0,1elsewhere

很明显,如果 ij ,我们有

fij(xi,xj)={140(xi,xj){(0,0),(1,0),(0,1),(1,1)}elsewhere

其中 Xi 的边缘pmf为

fi(xi)={120xi=0,1elsewhere

很明显,如果 ij ,我们有

fij(xi,xj)fi(xi)fj(xj)

因此 Xi,Xj 是独立的。然而

f(x1,x2,x3)≢f1(x1)f2(x2)f3(x3

所以 X1,X2,X3 不是互相独立的。

除非互相与成对独立会产生误解,我们通常不用修饰语互相。因此当我们说 X1,X2,X3 是独立的随机变量时,指的是他们互相独立。偶尔为了强调,我们会使用互相独立,读者须知道互相与成对独立是有区别的。

另外,如果几个随机变量互相独立且有同样的分布,我们称他们为独立同分布,简写为iid。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值