漫步数理统计二十五——正态分布

正态分布的动机源于中心极限定理(我们后面会介绍这个定理),这个定理说明正态分布为应用于统计推断提供了重要的一族分布,我们首先从标准正态分布开始。

考虑积分

I=12πexp(z22)dz(1)

这个积分是存在的,因为积分项是正的连续函数,它小于一个积分函数即

0<exp(z22)<exp(|z|+1), <z<


exp(|z|+1)dz=2e

为了计算 I ,注意到I>0 I2 可以写成

I2=12πexp(z2+w22)dzdw

通过极坐标变换可以求出该积分。如果令 z=rcosθ,w=rsinθ ,那么我们有

I2=12π2π00er2/2rdrdθ=12π2π0dθ=1

因为 (1) R 上是正的且R上积分为1,所以它是 R 上连续型随机变量的pdf,我们用Z表示随机变量,那么 Z 的pdf为

f(z)=12πexp(z22), <z<(2)

对于 tR Z 的mgf推导如下:

E[exp{tZ}]=exp{tz}12πexp{12z2}dz=exp{12t2}12πexp{12(zt)2}dz=exp{12t2}12πexp{12w2}dw(3)

其中对于最后一步积分,我们进行了一对一的变量代换 w=zt ,根据 (2) 可知,表达式 (3) 的值为1,因此 Z 的mgf为:

MZ(t)=exp{12t2}, <t<(4)

MZ(t) 的前二阶导如下:

MZ(t)=texp{12t2}MZ(t)=exp{12t2}+t2exp{12t2}

t=0 代入得到 Z 的均值与方差为

E(Z)=0,var(Z)=1(5)

接下来定义连续随机变量 X

X=bZ+a

其中 b>0 ,这是一对一变换,为了求出 X 的pdf,注意到变换的逆与雅可比为:z=b1(xa),J=b1。因为 b>0 ,所以由 (2) 可得 X 的pdf为

fX(x)=12πbexp{12(xab)2}, <x<

(5) 可得出 E(X)=a,var(X)=b2 ,因此在 X 的pdf表达式中,我们可以用μ=E(X),σ2=var(X)代替 a,b ,正式的形式如下定理所示。

1 对于随机变量 X ,如果它的pdf为

f(x)=12πσexp{12(xμσ)2}, <x<(6)

参数 μ,σ2 分别是 X 的均值与方差,我们常写成X满足 N(μ,σ2) 分布。

利用上面的符号, (2) 中的随机变量 Z 满足N(0,1)分布,我们称 Z 是标准正态随机变量。

对于X的mgf,根据关系 X=σZ+μ 以及 Z 的mgf可得:

E[exp{tX}]=E[exp{t(σZ+μ)}]=exp{μt}E[exp{tσZ}]=exp{μt}exp{12σ2t2}=exp{μt+12σ2t2}(7)

其中 <t<

总结一下就是:

Z=XμσN(0,1)XN(μ,σ2)(8)

1 如果 X 的mgf为

M(t)=e2t+32t2

那么 X 满足μ=2,σ2=64的正态分布,进一步,随机变量 Z=X28 满足 N(0,1) 分布。

2 之前我们用标准正态随机变量的矩生成函数推导出它的各阶矩,现在利用这个结论推导出满足 N(0,1) 分布的随机变量 X 的各阶矩。同上面一样,我们可以写成X=σZ+μ,其中 Z 满足N(0,1)分布,因此对于所有非负整数 k ,利用二项定理可得

E(Xk)=E[(σZ+μ)k]=j=0k(kj)σjE(Zj)μkj(9)

之前给出了 Z 的奇数矩为0,偶数矩由确定的表达式,将其代入(9)中即可推导出 X 的矩。

正态pdf(6)的图像如图 1 所示,有以下几个性质:(1)关于 x=μ 对称; (2) x=μ 处有最大值 1/(σ2π) (3) x 轴是其渐近线;(4) x=μ±σ 处为拐点。

文章开头提到,许多实际应用设计到正态分布,特别的,我们很想计算与其有关的概率。然而正态分布的pdf包含 exps2 这些项,因此无法以封闭的形式得到它们的反导,必须使用数值积分方法。因为标准正态分布与正态分布之间的关系 (8) ,我们只需要计算标准正态分布的概率即可,为此我们将标准正态随机变量 Z 的cdf表示为

Φ(z)=z12πexp{w22}dw0(1)

X 满足N(μ,σ2)分布,假设我们想计算某个特定 x FX(x)=P(Xx),对于 Z=(Xμ)/σ ,表达式 (8) 说明

FX(x)=P(Xx)=P(Zxμσ)=Φ(xμσ)

因此我们只需要 Φ(z) 的数值积分值,正态值通过 Z 的值就能计算出来了。例如,对于特定的p,我们想计算 xp 使得 p=FX(xp) ,取 zp=Φ1(p) ,那么根据 (8) 可得 xp=σzp+μ


这里写图片描述
图1

2 为标准正态密度,从左到zp的密度函数下面区域面积为 p ;即Φ(zp)=p

3 X 满足N(2,25),那么通过查表可得

P(0<X<10)=Φ(1025)Φ(025)=Φ(1.6)Φ(0.4)=0.945(10.655)=0.600


P(8<X<1)=Φ(125)Φ(825)=Φ(0.2)Φ(2)=(10.579)(10.977)=0.398


这里写图片描述
图2

4 假设 X 满足N(μ,σ2)分布,那么查表可得

P(μ2σ<X<μ+2σ)=Φ(μ+2σμσ)Φ(μ2σμσ)=Φ(2)Φ(2)=0.977(10.977)=0.954

5 假设某正态分布 N(μ,σ2) 小于60的概率为百分之十,大于90的概率为百分之五,那么 μ,σ 的值是多少?给定随机变量 X 满足N(μ,σ2) P(X60)=0.10,P(X90)=0.95 ,所以 Φ[(60μ)/σ]=0.10,Φ[(90μ)/σ]=0.95 ,查表可得

60μσ=1.282,90μσ=1.645

由此可得 μ=73.1,σ=10.2

1 之后我们会常遇到与分布相关的三个参数, N(μ,σ2) 中的均值 μ 称为位置参数,因为改变这个值只是简单的改变了正态pdf中间的位置;即pdf的图像与原来是一样的,除了位置移动了以外。 N(μ,σ2) 的标准差 σ 称为尺度参数,因为小的 σ 需要正态pdf又高又窄,而大的 σ 需要正态pdf又低又宽,然而不论 μ,σ 是什么值,正态pdf的图像都与钟类似,顺带提一下,伽玛分布的参数 β 也称为尺度参数, α 称为形状参数,因为改变值后其形状发生了变化。二项与泊松分布的 p,μ 也都是形状参数。

最后介绍两个重要的定理。

1 如果随机变量 X 满足N(μ,σ2),σ2>0,那么随机变量 V=(Xμ)2/σ2 满足 χ2(1) 分布。

因为 V=W2 ,其中 W=(Xμ)/σ 满足 N(0,1) ,所以对 v0 G(v) 的cdf为

G(v)=P(W2v)=P(vWv)


G(v)=2v012πew2/2dw,0v


G(v)=0,v<0

进行变量代换 w=y ,那么

G(v)=v012πyey/2dy,0v

因此连续型随机变量 V 的pdfg(v)=G(v)

g(v)=1π2v1/21ev/2, 0<v<=0 elsewhere

因为 Γ(12)=π ,所以 V χ2(1) ||

另一个重要的定理就是独立情况下的加性。

2 X1,,Xn 是独立的随机变量,使得 Xi 满足 N(μi,σ2i) 分布。令 Y=Σni=1aiXi ,其中 a1,,an 是常数,那么 Y 的分布为N(Σni=1aiμi,Σni=1a2iσ2i)

利用独立性与正态分布的mgf,对于 tR Y 的mgf为

MY(t)=E[exptY]=E[exp{i=1ntaiXi}]=i=1nE[exp{taiXi}]=i=1nexp{taiμi+(1/2)t2a2iσ2i}=exp{ti=1naiμi+(1/2)t2i=1na2iσ2i}

这就是 N(Σni=1aiμi,Σni=1a2iσ2i) 分布的mgf。 ||

该结论一个简单的推论为 X¯=n1Σni=1Xi 的分布,其中 X1,X2,,Xn 为独立同分布的随机变量。

1 X1,,Xn 是独立同分布 N(μ,σ2) 的随机变量,令 X¯=n1Σni=1Xi ,那么 X¯ 满足 N(μ,σ2/n) 分布。

为了证明这个推论,只需要取 ai=(1/n),μi=μ,σ2i=σ2 ,其中 i=1,2,,n ,然后利用定理2即可。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值