1.7 商群

§7 商群

在群中,我们定义子集合的运算:

A , B A,B A,B 是群 G G G 的两个子集合。定义:
A B = { a b ∣ a ∈ A , b ∈ B } AB = \{ ab | a\in A,b \in B \} AB={abaA,bB}
即由 A A A 中元素和 B B B 中元素相乘所得的集合。子集乘积满足结合律: ( A B ) C = A ( B C ) (AB)C = A(BC) (AB)C=A(BC).

显见:若 A A A 为一子群, B = { b } B=\{b\} B={b},则 A B AB AB 是子群 A A A 的一个右陪集。

对于任意子集合 A A A,定义:
A − 1 = { a − 1 ∣ a ∈ A } A^{-1} = \{ a^{-1} | a\in A \} A1={a1aA}
即由 A A A 中元素的逆元素组成的集合。

注:利用集合运算,我们可将定理1.4.1改写为:

G G G 中非空子集合 H H H 为一子群的充要条件是: H H − 1 ⊂ H . HH^{-1} \subset H. HH1H.

对于正规子群,我们有如下重要事实:


定理1.7.1

H H H 为群 G G G 的一个子群, H H H 是正规子群的充要条件是:任意两个左(右)陪集之积仍为一个左(右)陪集。

证明

⇒ \Rightarrow

H H H 为一正规子群, H a , H b Ha,Hb HaHb 是两个右陪集。则:
( H a ) ( H b ) = H ( a H ) b = H ( H a ) b = H a b . (Ha)(Hb) = H(aH)b = H(Ha)b = Hab. (Ha)(Hb)=H(aH)b=H(Ha)b=Hab.

⇐ \Leftarrow

H a , H b Ha,Hb HaHb 是任意两个右陪集。由条件 ( H a ) ( H b ) = H c . (Ha)(Hb) = Hc. (Ha)(Hb)=Hc. 显然 a b ∈ ( H a ) ( H b ) ab\in (Ha)(Hb) ab(Ha)(Hb),即 a b ∈ H c ab \in Hc abHc. 固有
( H a ) ( H b ) = H c = H a b (Ha)(Hb) = Hc = Hab (Ha)(Hb)=Hc=Hab
两边用 b − 1 b^{-1} b1 右乘得:
H a H = H a . HaH = Ha. HaH=Ha.
因为 e ∈ H e \in H eH,所以 a H ∈ H a H aH \in HaH aHHaH,即:
a H ∈ H a aH \in Ha aHHa

a H a − 1 ⊂ H a H , 对 所 有 的 a ∈ G . aHa^{-1} \subset HaH,对所有的a\in G. aHa1HaH,aG.
a a a 换为 a − 1 a^{-1} a1,则有
a − 1 H a ⊂ H a^{-1}Ha \subset H a1HaH
从而
a H a − 1 = H , 对 所 有 的 a ∈ G . aHa^{-1} = H,对所有的a \in G. aHa1=HaG.
这证明了 H H H 为正规子群。 ■ \blacksquare


G / H G/H G/H 代表正规子群 H H H 的全部不同的右陪集所组成的集合。


定义1.7.1(商群)

G / H G/H G/H 在陪集的乘法下所成的群称为 G G G 对正规子群 H H H商群,仍记为 G / H G/H G/H

对于正规子群,左陪集也就是右陪集,故 G / H G/H G/H 亦可以看作是左陪集所组成的群。


定义1.7.2(自然同态)

H ◃ G H \triangleleft G HG 。定义
φ ( a ) = H a , \varphi(a) = Ha, φ(a)=Ha,
显然有
φ ( a b ) = H a b = H a H b = φ ( a ) φ ( b ) . \varphi(ab) = Hab = HaHb = \varphi(a) \varphi(b). φ(ab)=Hab=HaHb=φ(a)φ(b).
因此, φ \varphi φ G G G G / H G/H G/H 的一个同态,而且是映上的。称其为群 G G G 到其商群的自然同态

下面的定理进一步叙述了同态和正规子群的关系:


定理1.7.2(群同态基本定理)

σ : G → G ′ \sigma: G\rightarrow G' σ:GG 是一满同态 , N N N σ \sigma σ 的核,则 G / N G/N G/N G ′ G' G 同构。

证明

φ : G → G / N \varphi: G\rightarrow G/N φ:GG/N 是一自然同态。这样,有两个满同态: σ \sigma σ φ \varphi φ. 要找一个同构 ψ : G / N → G ′ . \psi:G/N \rightarrow G'. ψ:G/NG.

定义
ψ ( N a ) = σ ( a ) , \psi(Na) = \sigma(a), ψ(Na)=σ(a),
因为 σ \sigma σ 是一满同态,即 σ ( G ) = G ′ \sigma(G) = G' σ(G)=G,所以由前面的分析表明, ψ \psi ψ G / N G/N G/N G ‘ G‘ G 的一个一一对应。且有:
ψ ( N a N b ) = ψ ( N a b ) = σ ( a b ) = σ ( a ) σ ( b ) = ψ ( N a ) ψ ( N b ) . \psi(NaNb) = \psi(Nab) = \sigma(ab) = \sigma(a)\sigma(b) = \psi(Na)\psi(Nb). ψ(NaNb)=ψ(Nab)=σ(ab)=σ(a)σ(b)=ψ(Na)ψ(Nb).
故证得: ψ : G / N → G ′ \psi: G/N \rightarrow G' ψ:G/NG 是一同构,原命题证毕。 ■ \blacksquare


  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值