抽象代数 01.03 子群与商群

http://www.icourses.cn 南开大学《抽象代数》

§1.3 子群与商群 {\color{blue} \text{\S 1.3 子群与商群}} §1.3 子群与商群

抽象代数研究代数体系,常常通过子体系与商体系去研究,它们是子集合与商集合的推广,对群来说,就是子群与商群。
定 义 1.3.1 设 H 是 群 G 的 一 个 非 空 子 集 , 如 果 H 对 于 G 的 运 算 也 构 成 群 , {\color{blue}定义1.3.1 \quad}设H是群G的一个非空子集,如果H对于G的运算也构成群, 1.3.1HGHG
则 称 H 为 G 的 一 个 子 群 , 记 作 H &lt; G . 则称H为G的一个{\color{blue}子群},记作H &lt; G. HGH<G.
子 群 的 运 算 与 原 群 的 运 算 一 致 , 这 一 点 是 重 要 的 。 因 此 , 子 群 H 的 幺 元 就 是 原 群 G 的 子群的运算与原群的运算一致,这一点是重要的。因此,子群H的幺元就是原群G的 HG
幺 元 e , 子 群 H 中 任 一 元 a 的 逆 元 就 是 在 G 中 a 的 逆 元 a − 1 。 对 任 一 群 G , H = { e } 与 H 幺元e,子群H中任一元a的逆元就是在G中a的逆元a^{-1}。对任一群G,H = \lbrace e \rbrace与 H eHaGaa1GH={e}H
= G 都 是 G 的 子 群 , 它 们 称 为 G 的 平 凡 子 群 , G 的 其 它 子 群 称 为 非 平 凡 子 群 。 = G都是G的子群,它们称为G的{\color{blue}平凡子群},G的其它子群称为{\color{blue}非平凡子群}。 =GGGG
例 1 { R + ; ⋅ } &lt; { R ∗ ; ⋅ } , 这 里 R + 表 示 全 体 正 实 数 . { { 1 , − 1 } ; ⋅ } &lt; { R ∗ ; ⋅ } . {\color{blue}例1 \quad} \lbrace \mathbb{R}^{+};\cdot \rbrace &lt; \lbrace \mathbb{R}^{*}; \cdot \rbrace, 这里\mathbb{R}^{+}表示全体正实数. \lbrace \lbrace 1, -1 \rbrace; \cdot \rbrace &lt; \lbrace \mathbb{R}^{*}; \cdot \rbrace. 1{R+;}<{R;},R+.{{1,1};}<{R;}.
{ R + ; ⋅ } 不 是 { R ; + } 的 子 群 , 虽 然 R + 是 R 的 子 集 合 . \lbrace \mathbb{R}^{+}; \cdot \rbrace 不是 \lbrace \mathbb{R}; + \rbrace 的子群,虽然 \mathbb{R}^{+}是 \mathbb{R}的子集合. {R+;}{R;+}R+R.
例 2 设 V 是 数 域 P 上 的 n 维 线 性 空 间 , S V 为 V 上 的 全 体 可 逆 变 换 , 由 §1.2  例 6 知 { S V ; ⋅ } {\color{blue}例2 \quad}设V是数域 \mathbb{P} 上的n维线性空间,S_V为V上的全体可逆变换,由 \text{\S1.2 } 例6 知 \lbrace S_V; \cdot \rbrace 2VPn线SVV§1.2 6{SV;}
是 群 。 现 以 G L ( V ) 表 示 V 上 全 体 可 逆 线 性 变 换 的 集 合 , 以 S L ( V ) 表 示 V 上 全 体 行 列 是群。现以GL(V)表示V上全体可逆线性变换的集合,以SL(V)表示V上全体行列 GL(V)V线SL(V)V
式 为 1 的 线 性 变 换 的 集 合 , 则 G L ( V ) &lt; S V , S L ( V ) &lt; S V , S L ( V ) &lt; G L ( V ) 。 我 们 称 式为1的线性变换的集合,则GL(V) &lt; S_V,SL(V) &lt; S_V, SL(V) &lt; GL(V)。我们称 1线GL(V)<SV,SL(V)<SV,SL(V)<GL(V)
G L ( V ) 为 V 的 一 般 线 性 群 , 称 S L ( V ) 为 V 的 特 殊 线 性 群 。 GL(V)为V的{\color{blue}一般线性群},称SL(V)为V的{\color{blue}特殊线性群}。 GL(V)V线,SL(V)V线
由 于 在 n 维 线 性 空 间 中 取 定 一 组 基 后 , V 上 的 线 性 变 换 与 P 上 的 n 阶 方 阵 之 间 就 建 由于在n维线性空间中取定一组基后,V上的线性变换与P上的n阶方阵之间就建 n线V线Pn
立 了 一 一 对 应 的 关 系 , 所 以 , 也 常 用 G L n ( R ) 表 示 n 阶 实 可 逆 方 阵 的 集 合 关 于 矩 阵 立了一一对应的关系,所以,也常用GL_n(\mathbb{R})表示n阶实可逆方阵的集合关于矩阵 GLn(R)n
乘 法 构 成 的 群 , 称 为 一 般 线 性 群 , 用 S L n ( R ) 表 示 行 列 式 为 1 的 n 阶 实 方 阵 关 于 矩 阵 乘法构成的群,称为一般线性群,用SL_n(\mathbb{R})表示行列式为1的n阶实方阵关于矩阵 线SLn(R)1n
乘 法 构 成 的 群 , 称 为 特 殊 实 线 性 群 。 于 是 也 有 S L n ( R ) &lt; G L n ( R ) 。 乘法构成的群,称为特殊实线性群。于是也有SL_n(\mathbb{R}) &lt; GL_n(\mathbb{R})。 线SLn(R)<GLn(R)
定 理 1.3.1 设 H 是 群 G 的 非 空 子 集 , 则 下 面 的 条 件 是 等 价 的 : {\color{blue}定理 1.3.1 \quad}{\color{green}设H是群G的非空子集,则下面的条件是等价的:} 1.3.1HG:
① H &lt; G ; {\color{green}①H &lt; G;} H<G;
② a , b ∈ H ⇒ a b ∈ H , a − 1 ∈ H ; {\color{green}②a,b \in H \Rightarrow ab \in H, a^{-1} \in H;} a,bHabH,a1H;
③ a , b ∈ H ⇒ a b − 1 ∈ H . {\color{green}③a,b \in H \Rightarrow ab^{-1} \in H.} a,bHab1H.
证 : ① ⇒ ② : 因 H 是 群 , 对 运 算 封 闭 , 故 a b ∈ H , H 中 任 一 元 a 的 逆 也 在 H 中 。 {\color{blue}证:}① \Rightarrow ②:因H是群,对运算封闭,故 ab \in H,H中任一元a的逆也在H中。 :HabHHaH
又 因 H 是 G 的 子 群 , 两 者 的 运 算 是 一 致 的 , 故 a 在 H 中 的 逆 元 就 是 a 在 G 中 的 逆 元 又因H是G的子群,两者的运算是一致的,故a在H中的逆元就是a在G中的逆元 HGaHaG
a − 1 , 所 以 a − 1 ∈ H 。 a^{-1},所以 a^{-1} \in H。 a1a1H
② ⇒ ③ : 据 ② 有 b ∈ H ⇒ b − 1 ∈ H , 又 有 a , b − 1 ∈ H ⇒ a b − 1 ∈ H 。 故 ③ 成 立 。 ② \Rightarrow ③:据②有b \in H \Rightarrow b^{-1} \in H, 又有a,b^{-1} \in H \Rightarrow ab^{-1} \in H。故③成立。 bHb1H,a,b1Hab1H
③ ⇒ ① : 已 知 H 是 群 G 的 一 个 非 空 子 集 , 下 边 我 们 从 ③ 按 定 义 1.3.1 去 证 明 H &lt; G 。 ③ \Rightarrow ①:已知H是群G的一个非空子集,下边我们从③按定义1.3.1去证明 H &lt; G。 HG1.3.1H<G
即 验 证 H 对 于 G 的 运 算 也 构 成 群 。 因 H 非 空 , 故 H 中 至 少 有 元 素 a , 而 由 ③ , 即验证H对于G的运算也构成群。因H非空,故H中至少有元素a,而由③, HGHHa
a , a ∈ H ⇒ a a − 1 ∈ H , 即 e ∈ H , 从 而 H 中 有 幺 元 。 又 ∀ b ∈ H , 由 ③ e , b ∈ H ⇒ a,a \in H \Rightarrow aa^{-1} \in H,即e \in H,从而H中有幺元。又 \forall b \in H,由③e,b \in H \Rightarrow a,aHaa1HeHHbHe,bH
e b − 1 ∈ H , 即 b − 1 ∈ H , 即 H 中 任 一 元 有 逆 元 。 又 ∀ a , b ∈ H , 由 ③ a , b − 1 ∈ H ⇒ eb^{-1} \in H,即b^{-1} \in H,即H中任一元有逆元。又 \forall a, b \in H,由③a,b^{-1} \in H \Rightarrow eb1Hb1HHa,bHa,b1H
a ( b − 1 ) − 1 ∈ H , 即 a b ∈ H , 故 H 对 运 算 封 闭 。 又 H ⊆ G , 而 G 是 群 , 运 算 满 足 a(b^{-1})^{-1} \in H,即ab \in H,故H对运算封闭。又H \subseteq G,而G是群,运算满足 a(b1)1HabHHHGG
结 合 律 , 所 以 其 子 集 H 中 元 素 的 运 算 也 满 足 结 合 律 。 结合律,所以其子集H中元素的运算也满足结合律。 H
由 以 上 四 点 据 定 义 1.2.3 知 , H 对 于 G 的 运 算 构 成 群 。 由以上四点据定义1.2.3知,H对于G的运算构成群。 1.2.3HG
我 们 常 常 用 定 理 中 的 ③ 去 验 证 非 空 子 集 H 是 群 G 的 子 群 。 要 注 意 的 是 , 如 果 运 算 记 作 我们常常用定理中的③去验证非空子集H是群G的子群。要注意的是,如果运算记作 HG
加 法 , 则 ③ 中 的 a b − 1 ∈ H , 应 改 为 a + ( − b ) ∈ H 或 a − b ∈ H 。 加法,则③中的ab^{-1} \in H,应改为 a + (-b) \in H 或 a - b \in H。 ab1Ha+(b)HabH
若 子 集 H 是 有 限 的 , 则 可 有 更 简 单 的 方 法 验 证 H 是 群 G 的 子 群 。 若子集H是有限的,则可有更简单的方法验证H是群G的子群。 HHG
命 题 1.3.2 设 H 为 群 G 的 非 空 有 限 子 集 , 则 H &lt; G &ThickSpace; ⟺ &ThickSpace; H 对 G 中 的 运 算 封 闭 。 {\color{blue}命题1.3.2}{\color{green}设H为群G的非空有限子集,则H &lt; G \iff H对G中的运算封闭。} 1.3.2HGH<GHG
证 : “ ⇒ ” : 据 定 义 1.3.1 立 得 。 {\color{blue}证:}“\Rightarrow”:据定义1.3.1立得。 1.3.1
“ ⇐ ” : 因 G 是 群 , 故 G 中 得 运 算 满 足 结 合 律 和 左 、 右 消 去 律 。 从 而 其 子 集 H 中 的 元 “\Leftarrow”:因G是群,故G中得运算满足结合律和左、右消去律。从而其子集H中的元 GGH
素 对 于 G 中 的 运 算 封 闭 , 于 是 H 对 G 中 的 运 算 构 成 有 限 半 群 , 又 满 足 左 、 右 消 去 律 。 素对于G中的运算封闭,于是H对G中的运算构成有限半群,又满足左、右消去律。 GHG
据 定 理 1.2.6 , H 对 G 中 的 运 算 是 群 , 即 H &lt; G 。 据定理1.2.6,H对G中的运算是群,即H &lt; G。 1.2.6HGH<G
命 题 1.3.3 若 H 1 , H 2 均 是 群 G 的 子 群 , 则 H 1 ∩ H 2 &lt; G 。 {\color{blue}命题1.3.3 \quad}{\color{green}若H_1,H_2均是群G的子群,则H_1 \cap H_2 &lt; G。} 1.3.3H1,H2GH1H2<G
证 : 因 e ∈ H 1 ∩ H 2 , 故 H 1 ∩ H 2 是 G 的 非 空 子 集 。 ∀ a , b ∈ H 1 ∩ H 2 , 则 有 {\color{blue}证:}因e \in H_1 \cap H_2,故H_1 \cap H_2是G的非空子集。\forall a, b \in H_1 \cap H_2,则有 eH1H2,H1H2Ga,bH1H2,
a , b ∈ H 1 和 a , b ∈ H 2 , 因 H 1 &lt; G 和 H 2 &lt; G , 据 定 理 1.3.1 有 a b − 1 ∈ H 1 和 a,b \in H_1 和 a, b \in H_2,因H_1 &lt; G 和 H_2 &lt; G,据定理1.3.1 有 ab^{-1} \in H_1 和 a,bH1a,bH2,H1<GH2<G,1.3.1ab1H1
a b − 1 ∈ H 2 , 从 而 有 a b − 1 ∈ H 1 ∩ H 2 , 再 据 定 理 1.3.1 知 H 1 ∩ H 2 &lt; G 。 ab^{-1} \in H_2,从而有 ab^{-1} \in H_1 \cap H_2,再据定理1.3.1 知 H_1 \cap H_2 &lt; G。 ab1H2,ab1H1H2,1.3.1H1H2<G
用同样方法可证,群G的任意多个(可以是无穷多个)子群的交仍是子群。
定 义 1.3.2 设 H 是 群 G 的 一 个 子 群 , a ∈ G , 则 {\color{blue}定义1.3.2 \quad}设H是群G的一个子群,a \in G,则 1.3.2HGaG,
a H = { a h ∣ h ∈ H } , H a = { h a ∣ h ∈ H } \quad aH = \lbrace ah | h \in H \rbrace, Ha = \lbrace ha | h \in H \rbrace aH={ahhH},Ha={hahH}
分 别 称 为 以 a 为 代 表 的 H 的 左 陪 集 , 右 陪 集 。 分别称为以a为代表的H的{\color{blue}左陪集,右陪集}。 aH
定 理 1.3.4 设 H 是 群 G 的 子 群 , 则 由 {\color{blue}定理1.3.4 \quad}{\color{green}设H是群G的子群,则由} 1.3.4HG
a R b &ThickSpace; ⟺ &ThickSpace; a − 1 b ∈ H {\color{green} \qquad aRb \iff a^{-1}b \in H } aRba1bH
所 确 定 的 G 中 的 关 系 R 是 一 个 等 价 关 系 , 且 a 所 在 的 等 价 类 a ˉ 恰 为 以 a 为 代 表 的 H 的 {\color{green}所确定的G中的关系R是一个等价关系,且a所在的等价类 \bar a 恰为以a为代表的H的} GRaaˉaH
左 陪 集 a H 。 故 H 的 全 体 左 陪 集 ( 重 复 的 只 取 一 个 ) 的 集 合 { a H } 是 G 的 一 个 分 类 。 {\color{green}左陪集 aH。故H的全体左陪集(重复的只取一个)的集合 \lbrace aH \rbrace 是G的一个分类。} aHH(){aH}G
证 : 首 先 证 明 R 是 等 价 关 系 。 给 定 G 中 的 a 和 b 后 , 我 们 可 以 唯 一 地 确 定 a − 1 b 是 不 是 {\color{bule}证:}首先证明R是等价关系。给定G中的a和b后,我们可以唯一地确定a^{-1}b是不是 RGaba1b
属 于 H , 所 以 R 是 G 的 一 个 关 系 。 属于H,所以R是G的一个关系。 HRG
∀ a ∈ G , a − 1 a = e ∈ H , 故 a R a 。 即 R 满 足 反 身 性 。 \forall a \in G, a^{-1}a = e \in H, 故aRa。即R满足反身性。 aG,a1a=eH,aRaR
又 若 a R b , 即 a − 1 b ∈ H , 因 H 是 群 , 故 ( a − 1 b ) − 1 ∈ H , 即 b − 1 a ∈ H , 因 H 是 群 , 又若aRb,即a^{-1}b \in H,因H是群,故(a^{-1}b)^{-1} \in H,即b^{-1}a \in H,因H是群, aRb,a1bH,H(a1b)1H,b1aH,H
故 b R a , 即 R 满 足 对 称 性 。 故bRa,即R满足对称性。 bRa,R
又 若 a R b , b R c , 则 a − 1 b ∈ H , b − 1 c ∈ H , 因 H 是 群 , ( a − 1 b ) ( b − 1 c ) ∈ H , 即 a − 1 c ∈ H , 又若aRb, bRc,则a^{-1}b \in H, b^{-1}c \in H,因H是群,(a^{-1}b)(b^{-1}c) \in H,即a^{-1}c \in H, aRb,bRc,a1bH,b1cH,H(a1b)(b1c)H,a1cH,
所 以 a R c , 故 R 满 足 传 递 性 。 所以aRc,故R满足传递性。 aRc,R
据 定 义 1.1.10 , R 是 G 的 一 个 等 价 关 系 。 据定义1.1.10,R是G的一个等价关系。 1.1.10RG
再 证 明 ∀ a ∈ G , a ˉ = a H . ∀ b ∈ a ˉ , 有 a R b , 故 a − 1 b ∈ H , 即 有 h ∈ H , 使 a − 1 b = h , 再证明 \forall a \in G, \bar a = aH. \forall b \in \bar a, 有aRb, 故a^{-1}b \in H,即有h \in H,使a^{-1}b = h, aG,aˉ=aH.baˉ,aRb,a1bH,hH,使a1b=h,
即 b = a h ∈ a H , 故 a ˉ ⊆ a H , 又 ∀ b ∈ a H , 即 有 h ∈ H , 使 b = a h , 故 a − 1 b = h ∈ H , 即 b = ah \in aH,故\bar a \subseteq aH,又\forall b \in aH,即有h \in H,使b = ah,故a^{-1}b = h \in H, b=ahaH,aˉaH,baH,hH,使b=ah,a1b=hH,
即 b ∈ a ˉ , 故 a H ⊆ a ˉ 。 于 是 a ˉ = H 。 即b \in \bar a,故aH \subseteq \bar a。于是\bar a = H。 baˉ,aHaˉaˉ=H
据 定 理 1.1.2 知 , 上 述 等 价 关 系 决 定 集 合 G 的 一 个 分 类 , 每 一 个 类 就 是 该 等 价 关 系 下 据定理1.1.2知,上述等价关系决定集合G的一个分类,每一个类就是该等价关系下 1.1.2G
的 一 个 等 价 类 a , 现 a ˉ = a H , 故 { a H } 是 G 的 一 个 分 类 。 的一个等价类a,现\bar a = aH,故\lbrace aH \rbrace 是G的一个分类。 aaˉ=aH,{aH}G
推 论 1.3.5 设 H 是 群 G 的 子 群 , a , b ∈ G , 则 a H = b H &ThickSpace; ⟺ &ThickSpace; a − 1 b ∈ H . {\color{blue}推论1.3.5\quad}{\color{green}设H是群G的子群,a,b \in G,则aH = bH \iff a^{-1}b \in H.} 1.3.5HGa,bG,aH=bHa1bH.
定 义 1.3.3 设 H 是 群 G 的 子 群 , G 关 于 等 价 关 系 “ a R b &ThickSpace; ⟺ &ThickSpace; a − 1 b ∈ H ” 的 商 {\color{blue}定义1.3.3 \quad}设H是群G的子群,G关于等价关系“aRb \iff a^{-1}b \in H”的商 1.3.3HGGaRba1bH
集 合 G / R 称 为 G 对 H 的 左 商 集 , 也 称 为 G 对 H 的 左 陪 集 空 间 , 也 记 为 G / H . 集合G/R称为G对H的{\color{blue}左商集},也称为G对H的{\color{blue}左陪集空间},也记为G/H. G/RGH,GH,G/H.
G / H 的 基 数 ∣ G / H ∣ 称 为 H 在 G 中 的 指 数 , 记 为 [ G : H ] 。 G/H的基数|G/H|称为{\color{blue}H在G中的指数},记为[G:H]。 G/HG/HHG[G:H]
应 该 注 意 的 是 , 以 上 叙 述 中 都 把 群 G 中 的 运 算 记 作 乘 法 , 并 且 省 去 了 运 算 符 。 {\color{#112288}应该注意的是,以上叙述中都把群G中的运算记作乘法,并且省去了运算符。} ,G
如 果 群 G 中 的 运 算 记 作 加 法 , 则 以 a 为 代 表 的 H 的 左 陪 集 应 该 记 作 a + H = {\color{#112288}如果群G中的运算记作加法,则以a为代表的H的左陪集应该记作a+H = } GaHa+H=
{ a + h ∣ h ∈ H } , 导 出 G 对 H 的 左 陪 集 空 间 的 关 系 应 记 作 “ a R b &ThickSpace; ⟺ &ThickSpace; b − a ∈ H ” {\color{#112288}\lbrace a+h | h \in H \rbrace,导出G对H的左陪集空间的关系应记作“aRb \iff b-a \in H”} {a+hhH},GHaRbbaH
例 4 [ Z : m Z ] = m , 这 里 m ∈ N . {\color{blue}例4\quad}[\mathbb{Z}:m\mathbb{Z}] = m,这里m \in \mathbb{N}. 4[Z:mZ]=m,mN.
由 例 3 知 , m Z &lt; Z . 于 是 可 以 考 虑 Z 对 m Z 的 左 陪 集 空 间 . 我 们 有 由例3知,m\mathbb{Z} &lt; \mathbb{Z}.于是可以考虑\mathbb{Z}对m\mathbb{Z}的左陪集空间.我们有 3mZ<Z.ZmZ.
Z = ( 0 + m Z ) ∪ ( 1 + m Z ) ∪ ⋯ ∪ ( ( m − 1 ) + m Z ) \mathbb{Z} = (0+m\mathbb{Z}) \cup (1 + m\mathbb{Z}) \cup \cdots \cup ((m-1) + m\mathbb{Z}) Z=(0+mZ)(1+mZ)((m1)+mZ)
= 0 ˉ ∪ 1 ˉ ∪ ⋯ ∪ ( m − 1 ) ‾ \quad = \bar 0 \cup \bar 1 \cup \cdots \cup \overline {(m-1)} =0ˉ1ˉ(m1)
上 述 第 一 个 等 式 把 整 数 加 群 Z 表 成 了 m 个 左 陪 集 的 并 , 第 二 个 等 式 则 把 Z 表 成 了 m 个 上述第一个等式把整数加群\mathbb{Z}表成了m个左陪集的并,第二个等式则把\mathbb{Z}表成了m个 ZmZm
等 价 类 的 并 。 故 [ Z : m Z ] = m . 等价类的并。故[\mathbb{Z}:m\mathbb{Z}] = m. [Z:mZ]=m.
定 理 1.3.6 ( L a g r a n g e 定 理 ) 设 G 是 有 限 群 , H &lt; G , 则 有 {\color{blue}定理1.3.6(Lagrange定理)\quad}{\color{green}设G是有限群,H&lt;G,则有} 1.3.6(Lagrange)GH<G,
∣ G ∣ = [ G : H ] ⋅ ∣ H ∣ 。 {\color{green}\qquad |G| = [G:H]\cdot |H|。} G=[G:H]H
从 而 子 群 H 的 阶 是 群 G 的 阶 的 因 子 。 {\color{green}从而子群H的阶是群G的阶的因子。} HG
证 : 首 先 , H 的 任 一 左 陪 集 a H 中 的 元 素 个 数 , 都 等 于 H 中 的 元 素 个 数 ∣ H ∣ 。 事 实 上 , {\color{blue}证:}首先,H的任一左陪集aH中的元素个数,都等于H中的元素个数|H|。事实上, :HaHHH
ϕ : h → a h , ∀ h ∈ H \qquad \phi : h \to ah, \forall h \in H ϕ:hah,hH
是 H 到 a H 的 双 射 。 是H到aH的双射。 HaH
其 次 , 根 据 定 理 1.3.4 , G 可 以 表 为 H 的 全 体 左 陪 集 不 相 交 的 并 , 再 据 定 义 1.3.3 , 这 其次,根据定理1.3.4,G可以表为H的全体左陪集不相交的并,再据定义1.3.3,这 1.3.4GH1.3.3
些 左 陪 集 的 个 数 是 [ G : H ] , 从 而 G 中 有 [ G : H ] ⋅ ∣ H ∣ 个 元 素 , 即 ∣ G ∣ = [ G : H ] ⋅ ∣ H ∣ 。 些左陪集的个数是[G:H],从而G中有[G:H] \cdot |H| 个元素,即 |G| = [G:H] \cdot |H|。 [G:H]G[G:H]HG=[G:H]H
推 论 1.3.7 设 G 是 有 限 群 , K &lt; G , H &lt; K , 则 有 {\color{blue}推论1.3.7 \quad}{\color{green}设G是有限群,K&lt;G,H&lt;K,则有} 1.3.7GK<G,H<K,
[ G : H ] = [ G : K ] ⋅ [ K : H ] 。 {\color{green}\qquad [G:H] = [G:K] \cdot [K:H]。} [G:H]=[G:K][K:H]
证 : 据 定 理 1.3.5 有 {\color{blue}证:}据定理1.3.5有 :1.3.5
∣ G ∣ = [ G : K ] ⋅ ∣ K ∣ = [ G : K ] ⋅ [ K : H ] ⋅ ∣ H ∣ , |G| = [G:K] \cdot |K| = [G:K] \cdot [K:H] \cdot |H|, G=[G:K]K=[G:K][K:H]H,
∣ G ∣ = [ G : H ] ⋅ ∣ H ∣ . |G| = [G:H] \cdot |H|. G=[G:H]H.
于 是 于是
[ G : H ] ⋅ ∣ H ∣ = [ G : K ] ⋅ [ K : H ] ⋅ ∣ H ∣ . [G:H] \cdot |H| = [G:K] \cdot [K:H] \cdot |H|. [G:H]H=[G:K][K:H]H.
约 去 等 号 两 边 的 ∣ H ∣ , 便 完 成 证 明 。 约去等号两边的|H|,便完成证明。 H,便
过去我们从“群是有结构的集合”自然想到,群G的子群个数比子集个数会少得多;现在我们知道,群G的子群的阶是|G|的因子,而子集则没有这一要求,所以又一次看出,子群的数目比子集少得多。
从左、右陪集的定义知道,一般地,没有
a H = H a , ∀ a ∈ G , \qquad aH = Ha, \forall a \in G, aH=Ha,aG,
如果群G的某个子群H有上述性质,则将连带产生许多很好的性质,并可由此导出商群的概念。具有这种性质的子群H,我们将称为G的正规子群。但是,我们更愿意用另一种形式来定义“正规子群”,因为它比较容易用来检验G的一个子群H是不是正规子群。
定 义 1.3.4 设 G 是 群 , H &lt; G , 如 果 有 {\color{blue}定义1.3.4\quad}设G是群,H&lt;G,如果有 1.3.4GH<G,
g h g − 1 ∈ H , ∀ g ∈ G , ∀ h ∈ H , \qquad ghg^{-1} \in H, \forall g \in G, \forall h \in H, ghg1H,gG,hH,
则 称 H 为 G 的 一 个 正 规 子 群 , 记 为 H ⊲ G . 则称H为G的一个{\color{blue}正规子群},记为H \lhd G. HGHG.
例 5 平 凡 子 群 均 是 正 规 子 群 。 {\color{blue}例5\quad}平凡子群均是正规子群。 5
例 6 可 换 群 的 任 何 子 群 都 是 正 规 子 群 。 {\color{blue}例6\quad}可换群的任何子群都是正规子群。 6
例 7 S L ( V ) ⊲ G L ( V ) 。 {\color{blue}例7\quad}SL(V) \lhd GL(V)。 7SL(V)GL(V)
下面的定理给出正规子群的几个充要条件,也说明了正规子群的形式上不同的定义的等价性。
定 理 1.3.8 设 G 是 群 , H &lt; G , 则 下 边 的 条 件 是 等 价 的 : {\color{blue}定理1.3.8\quad}{\color{green}设G是群, H &lt; G, 则下边的条件是等价的:} 1.3.8G,H<G,
① H ⊲ G ; {\color{green}①H \lhd G;} HG
② g H = H g , ∀ g ∈ G ; {\color{green}②gH = Hg, \forall g \in G;} gH=Hg,gG;
③ g 1 H ⋅ g 2 H = g 1 g 2 H , ∀ g 1 , g 2 ∈ G 。 {\color{green}③g_1H \cdot g_2H = g_1g_2H, \forall g_1,g_2 \in G。} g1Hg2H=g1g2H,g1,g2G
这 里 g 1 H ⋅ g 2 H = { g 1 h 1 g 2 h 2 ∣ h 1 , h 2 ∈ H } 。 {\color{green}这里g_1H \cdot g_2H = \lbrace g_1h_1g_2h_2 | h_1, h_2 \in H \rbrace。} g1Hg2H={g1h1g2h2h1,h2H}
证 : ① ⇒ ② : 因 H ⊲ G , 故 ∀ g ∈ G , ∀ h ∈ H , 有 {\color{blue}证:}① \Rightarrow ②:因 H \lhd G, 故 \forall g \in G, \forall h \in H,有 :HG,gG,hH,
g h = g h g − 1 g ∈ H g ; h g = g g − 1 h g ∈ g H . 故 g H = H g . gh = ghg^{-1}g \in Hg; hg = gg^{-1}hg \in gH.故gH = Hg. gh=ghg1gHg;hg=gg1hggH.gH=Hg.
② ⇒ ③ : ∀ g 1 , g 2 ∈ G , 考 虑 g 1 H ⋅ g 2 H 中 的 任 一 元 素 g 1 h 1 g 2 h 2 , h 1 , h 2 ∈ H , ② \Rightarrow ③: \forall g_1, g_2 \in G, 考虑g_1H \cdot g_2H中的任一元素g_1h_1g_2h_2,h_1, h_2 \in H, :g1,g2G,g1Hg2Hg1h1g2h2,h1,h2H,
由 ② 有 h 1 g 2 ∈ H g 2 = g 2 H , 故 有 h 3 ∈ H , 使 h 1 g 2 = g 2 h 3 。 由②有h_1g_2 \in Hg_2 = g_2H,故有 h_3 \in H,使 h_1g_2 = g_2h_3。 h1g2Hg2=g2H,h3H,使h1g2=g2h3
故 g 1 h 1 g 2 h 2 = g 1 g 2 h 3 h 2 ∈ g 1 g 2 H , 从 而 g 1 H ⋅ g 2 H ⊆ g 1 g 2 H . 故g_1h_1g_2h_2 = g_1g_2h_3h_2 \in g_1g_2H,从而g_1H \cdot g_2H \subseteq g_1g_2H. g1h1g2h2=g1g2h3h2g1g2H,g1Hg2Hg1g2H.
又 g 1 g 2 H 的 任 一 元 g 1 g 2 h = g 1 e g 2 h ∈ g 1 H ⋅ g 2 H , 从 而 g 1 g 2 H ⊆ g 1 H ⋅ g 2 H . 又g_1g_2H的任一元g_1g_2h = g_1eg_2h \in g_1H \cdot g_2H,从而g_1g_2H \subseteq g_1H \cdot g_2H. g1g2Hg1g2h=g1eg2hg1Hg2H,g1g2Hg1Hg2H.
故 g 1 H ⋅ g 2 H = g 1 g 2 H , ∀ g 1 , g 2 ∈ G . 故g_1H \cdot g_2H = g_1g_2H, \forall g_1,g_2 \in G. g1Hg2H=g1g2H,g1,g2G.
③ ⇒ ① : 已 知 H &lt; G , 现 ∀ g ∈ G , ∀ h ∈ H , 由 ③ 有 g h g − 1 = g h g − 1 e ∈ g H ⋅ g − 1 H ③\Rightarrow ①:已知H &lt; G,现\forall g \in G, \forall h \in H, 由③有ghg^{-1} = ghg^{-1}e \in gH \cdot g^{-1}H :H<G,gG,hH,ghg1=ghg1egHg1H
= g g − 1 H = e H = H , 据 定 义 1.3.4 知 H ⊲ G . = gg^{-1}H = eH = H,据定义1.3.4知H \lhd G. =gg1H=eH=H,1.3.4HG.
一般地,子群H的两个左陪集的乘积不一定仍是左陪集,但由定义1.3.8知,当H是G的正规子群的时候,两个左陪集的乘积一定是左陪集,并且乘积的代表元就是原来两个左陪集代表元的乘积。
定 理 1.3.9 设 G 是 群 , H &lt; G , R 是 G 中 由 “ a R b &ThickSpace; ⟺ &ThickSpace; a − 1 b ∈ H ” 定 义 的 关 系 , 则 {\color{blue}定理1.3.9\quad}{\color{green}设G是群,H &lt; G,R是G中由“aRb \iff a^{-1}b \in H”定义的关系,则} 1.3.9GH<G,RGaRba1bH
R 是 G 中 的 同 余 关 系 &ThickSpace; ⟺ &ThickSpace; H ⊲ G . {\color{green}\qquad R是G中的同余关系 \iff H \lhd G.} RGHG.
此 时 , 商 集 合 G / R 对 同 余 关 系 R 导 出 的 运 算 也 构 成 一 个 群 , 称 为 G 对 H 的 商 群 {\color{green}此时,商集合G/R对同余关系R导出的运算也构成一个群,称为G对H的}{\color{blue}商群} G/RRGH
, 记 为 G / H 。 {\color{green},记为G/H。} G/H
证 : “ ⇐ ” : 定 理 1.3.4 已 经 告 诉 我 们 , 上 述 R 是 G 中 的 一 个 等 价 关 系 。 {\color{blue}证:}“\Leftarrow”:定理1.3.4已经告诉我们,上述R是G中的一个等价关系。 :1.3.4RG
现 设 a 1 R b 1 , a 2 R b 2 , 去 证 a 1 a 2 R b 1 b 2 。 即 要 证 ( a 1 a 2 ) − 1 ( b 1 b 2 ) ∈ H , 因 现设a_1Rb_1,a_2Rb_2,去证a_1a_2Rb_1b_2。即要证(a_1a_2)^{-1}(b_1b_2) \in H,因 a1Rb1,a2Rb2,a1a2Rb1b2(a1a2)1(b1b2)H,
( a 1 a 2 ) − 1 ( b 1 b 2 ) = a 2 − 1 ( a 1 − 1 b 1 ) a 2 a 2 − 1 b 2 , \qquad (a_1a_2)^{-1}(b_1b_2) = a_2^{-1}(a_1^{-1}b_1)a_2a_2^{-1}b_2, (a1a2)1(b1b2)=a21(a11b1)a2a21b2,
而 a 1 − 1 b 1 ∈ H , a 2 − 1 b 2 ∈ H 及 由 H ⊲ G 知 a 2 − 1 ( a 1 − 1 b 1 ) a 2 ∈ H , 而a_1^{-1}b_1 \in H, a_2^{-1}b_2 \in H及由H \lhd G知a_2^{-1}(a_1^{-1}b_1)a_2 \in H, a11b1H,a21b2HHGa21(a11b1)a2H,
故 ( a 1 a 2 ) − 1 ( b 1 b 2 ) ∈ H . 据 定 义 1.1.15 知 , R 关 于 群 G 中 的 运 算 是 同 余 关 系 。 故(a_1a_2)^{-1}(b_1b_2) \in H.据定义1.1.15知,R关于群G中的运算是同余关系。 (a1a2)1(b1b2)H.1.1.15,RG
“ ⇒ ” : 现 设 R 是 G 中 的 同 余 关 系 , 去 证 H ⊲ G . 已 知 H &lt; G , 下 ∀ g ∈ G , “\Rightarrow”:现设R是G中的同余关系,去证H \lhd G.已知H &lt; G,下\forall g \in G, RGHG.H<G,gG,
∀ h ∈ H , 证 明 g h g − 1 ∈ H . 因 为 g − 1 ( g h ) = h ∈ H . 故 g R ( g h ) . 又 有 g − 1 R g − 1 . \forall h \in H,证明 ghg^{-1} \in H.因为g^{-1}(gh) = h \in H.故gR(gh).又有g^{-1}Rg^{-1}. hH,ghg1H.g1(gh)=hH.gR(gh).g1Rg1.
再 据 R 是 G 中 的 同 余 关 系 知 , g g − 1 R ( g h ) g − 1 , 即 e R g h g − 1 , 按 R 的 定 义 , 再据R是G中的同余关系知,gg^{-1}R(gh)g^{-1},即eRghg^{-1},按R的定义, RG,gg1R(gh)g1,eRghg1,R,
e − 1 g h g − 1 ∈ H , 这 就 是 g h g − 1 ∈ H . e^{-1}ghg^{-1} \in H,这就是ghg^{-1} \in H. e1ghg1H,ghg1H.
事 实 上 , 这 充 要 条 件 也 可 以 从 §1.1 最 后 两 个 自 然 段 关 于 同 余 关 系 导 出 商 集 合 中 事实上,这充要条件也可以从{\text{\S 1.1}}最后两个自然段关于同余关系导出商集合中 §1.1
的 一 个 运 算 , 以 及 定 理 1.3.7 中 ① &ThickSpace; ⟺ &ThickSpace; ③ , 很 简 单 地 得 出 来 。 此 时 , §1.1 中 的 的一个运算,以及定理1.3.7中① \iff ③,很简单地得出来。此时,{\text{\S 1.1}}中的 1.3.7§1.1
a ˉ ∘ ˉ b ˉ = ( a ∘ b ) ‾ , ∀ a , b ∈ A . \qquad \bar a \bar \circ \bar b = \overline{(a \circ b)}, \forall a, b \in A. aˉˉbˉ=(ab),a,bA.
就 是 就是
a H ⋅ b H = ( a ⋅ b ) H , ∀ a , b ∈ G , \qquad aH \cdot bH = (a \cdot b)H, \forall a, b \in G, aHbH=(ab)H,a,bG,
即 ∀ a H , b H ∈ G / R , a H ⋅ b H = ( a ⋅ b ) H . 即\forall aH, bH \in G/R,aH \cdot bH = (a \cdot b)H. aH,bHG/R,aHbH=(ab)H.
从 而 这 就 是 在 左 陪 集 空 间 ( 左 商 集 ) 中 定 义 的 二 元 运 算 。 这 一 运 算 满 足 结 合 律 , 从而这就是在左陪集空间(左商集)中定义的二元运算。这一运算满足结合律, ()
因 为 ∀ a H , b H , c H ∈ G / R , 有 因为\forall aH, bH, cH \in G/R,有 aH,bH,cHG/R,
( a H ⋅ b H ) ⋅ c H = a b H ⋅ c H = ( a b c ) H = a H ⋅ ( b c ) H = a H ⋅ ( b H ⋅ c H ) (aH \cdot bH) \cdot cH = abH \cdot cH = (abc)H = aH \cdot (bc)H = aH \cdot (bH \cdot cH) (aHbH)cH=abHcH=(abc)H=aH(bc)H=aH(bHcH)
这 一 运 算 有 左 幺 元 e H , 因 为 ∀ a H ∈ G / R , 有 这一运算有左幺元eH,因为\forall aH \in G/R,有 eH,aHG/R,
e H ⋅ a H = ( e a ) H = a H . \qquad eH \cdot aH = (ea)H = aH. eHaH=(ea)H=aH.
G / R 中 任 一 元 a H 有 左 逆 元 a − 1 H , 因 为 G/R中任一元 aH 有左逆元a^{-1}H,因为 G/RaHa1H,
a − 1 H ⋅ a H = ( a − 1 a ) H = e H . \qquad a^{-1}H \cdot aH = (a^{-1}a)H = eH. a1HaH=(a1a)H=eH.
所 以 商 集 合 G / R 对 于 同 余 关 系 R 导 出 的 运 算 也 构 成 一 个 群 , 我 们 称 之 为 G 对 H 的 所以商集合G/R对于同余关系R导出的运算也构成一个群,我们称之为G对H的 G/RRGH
商 群 , 记 为 G / H 。 商 群 中 的 幺 元 e H 常 常 记 为 H 。 商群,记为G/H。商群中的幺元eH常常记为H。 G/HeHH
要注意的是,只有对G中的正规子群H,才能谈论商群;对一般的子群不能谈商群,只能谈左陪集空间(左商集)。
例 8 由 于 平 凡 子 群 都 是 正 规 子 群 , 故 有 商 群 G / { e } 和 G / G , 事 实 上 , {\color{blue}例8\quad}由于平凡子群都是正规子群,故有商群G/ \lbrace e \rbrace 和G/G,事实上, 8G/{e}G/G,
G / { e } 的 结 构 与 G 是 一 样 的 , 而 G / G 中 只 有 一 个 元 素 G . G/ \lbrace e \rbrace 的结构与G是一样的,而G/G中只有一个元素G. G/{e}GG/GG.
例 9 由 于 整 数 加 群 { Z ; + } 是 可 换 群 , 故 其 任 一 子 群 m Z 是 Z 的 正 规 子 群 , {\color{blue}例9\quad}由于整数加群 \lbrace \mathbb{Z}; + \rbrace 是可换群,故其任一子群 m \mathbb{Z} 是 Z的正规子群, 9{Z;+}mZZ
所 以 有 商 群 Z / m Z . 据 例 4 知 所以有商群 \mathbb{Z} / m \mathbb{Z}.据例4知 Z/mZ.4
Z / m Z = { 0 ˉ , 1 ˉ , ⋯ &ThinSpace; , ( m − 1 ) ‾ } . \qquad \mathbb{Z} / m \mathbb{Z} = \lbrace \bar 0, \bar 1, \cdots, \overline{(m-1)} \rbrace. Z/mZ={0ˉ,1ˉ,,(m1)}.
注 意 到 Z 中 的 运 算 是 加 法 , 所 以 商 群 中 的 运 算 通 常 记 为 加 法 , 注意到 \mathbb{Z} 中的运算是加法,所以商群中的运算通常记为加法, Z
于 是 r 1 ‾ + r 2 ‾ = r 1 + r 2 ‾ = r ‾ , 其 中 r 是 这 样 得 到 的 : 于是 \overline {r_1} + \overline{r_2} = \overline{r_1 + r_2} = \overline{r},其中r是这样得到的: r1+r2=r1+r2=r,r
r 1 + r 2 = q m + r , 0 ≤ r &lt; m . r_1 + r_2 = qm + r, 0 \leq r \lt m. r1+r2=qm+r,0r<m.
这 个 群 通 常 简 记 为 Z m , 称 为 模 m 的 剩 余 类 加 群 。 这个群通常简记为 \mathbb{Z}_m,称为模m的{\color{blue}剩余类加群}。 Zm,m

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值