Chapter2 解析函数

Chapter 2: 解析函数

在本章中, 我们将研究复变函数的微分法. 我们将在本章中介绍复变函数解析的定义和相应的判别方法, 并将实变函数中的五个基本初等函数逐一推广到复数域中.

2.1 函数解析性的概念和判定

复变函数的导数与微分

和实变函数中的导数, 微分定义一样, 我们也可定义复变函数的导数和微分的定义. 实际上, 它们的定义是基本一致的, 以至于实变函数中几乎所有的求导基本公式, 均可以不加修改地应用到复数域上.

定义2.1.1 (复变函数的导数)

形式上, 复变函数的导数和实变函数的导数完全一致:

w = f ( z ) w =f(z) w=f(z) 定义于 D ⊆ C D\subseteq \mathbb{C} DC, 点 z 0 , z 0 + Δ z ∈ D z_0, z_0 + \Delta z \in D z0,z0+ΔzD.
若极限:
lim ⁡ Δ z → 0 f ( z 0 + Δ z ) − f ( z 0 ) Δ z = lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 \lim_{\Delta z \rightarrow 0}\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{z\rightarrow z_0}\frac{f(z) - f(z_0)}{z - z_0} Δz0limΔzf(z0+Δz)f(z0)=zz0limzz0f(z)f(z0)
存在, 则称:

函数 f ( z ) f(z) f(z) z 0 z_0 z0 点可导
并称该极限值为
函数 f ( z ) f(z) f(z) z 0 z_0 z0 点的导数
记为 f ′ ( z 0 ) . f'(z_0). f(z0).

[注]
1. 若 f ( z ) f(z) f(z) 在区域 D D D 内处处可导, 则称 f ( z ) f(z) f(z) D D D 内可导.
2. 复变函数的极限存在要求极限的值不受 Δ z \Delta z Δz 趋近于 0 0 0 的方式影响, 这对复变函数极限的存在性提出了极高的要求. 一般来说, 我们更难确定复变函数的极限在某一点是存在的, 而否认极限在一点的存在性更加容易.


和复变函数的导数定义类似, 我们也可以推广复变函数微分的定义:

定义2.1.2 (复变函数的微分)

复变函数的微分在形式上也和实变函数保持一致.

w = f ( z ) w = f(z) w=f(z) z 0 ∈ D z_0 \in D z0D 上可导, 若
Δ w = f ( z 0 + Δ z ) − f ( z 0 ) = f ′ ( z 0 ) ⋅ Δ z + ρ ( Δ z ) Δ z \Delta w = f(z_0 + \Delta z) - f(z_0) = f'(z_0)\cdot \Delta z + \rho (\Delta z)\Delta z Δw=f(z0+Δz)f(z0)=f(z0)Δz+ρ(Δz)Δz
其中 lim ⁡ Δ z → 0 ρ ( Δ z ) = 0 \lim_{\Delta z \rightarrow 0}\rho(\Delta z) = 0 limΔz0ρ(Δz)=0, 且 ∣ ρ ( Δ z ) Δ z ∣ |\rho(\Delta z)\Delta z| ρ(Δz)Δz Δ z \Delta z Δz 的高阶无穷小, f ′ ( z 0 ) ⋅ Δ z f'(z_0)\cdot \Delta z f(z0)Δz Δ w \Delta w Δw 的线性主部. 则称 f ′ ( z 0 ) ⋅ Δ z f'(z_0)\cdot \Delta z f(z0)Δz

w = f ( z ) w = f(z) w=f(z) 在点 z 0 z_0 z0 的微分,
记为
d w = f ′ ( z 0 ) ⋅ Δ z . dw = f'(z_0)\cdot \Delta z. dw=f(z0)Δz.

[注]
1. 函数 w = f ( z ) w = f(z) w=f(z) z 0 z_0 z0 可导 ⇔ \Leftrightarrow z 0 z_0 z0 可微.
2. 若 f ( z ) f(z) f(z) 在区域 D D D 处处可微, 称其在 D D D 内可微.

在复变函数中, 处处连续但处处不可微的函数唾手可得, 这和实变函数中的情况有很大区别.


解析函数的概念

首先, 给出 “解析函数” 的定义:

定义2.1.3 (解析函数)

设函数 f ( z ) f(z) f(z) 定义于 D D D 上. 若 z 0 ∈ D z_0 \in D z0D, 且存在 z 0 z_0 z0 的一个邻域, 使得 f ( z ) f(z) f(z) D D D 上可微, 则称 f ( z ) f(z) f(z) z 0 z_0 z0 处解析.

f ( z ) f(z) f(z) 在区域 D D D 内可微 (即在区域 D D D 内每一点上均可微), 则称 f ( z ) f(z) f(z) 在区域 D D D 上解析.

f ( z ) f(z) f(z) z 0 z_0 z0 处不解析, 则称该点为 f ( z ) f(z) f(z)奇点.

[注]
1. 一般而言, 泛称的解析函数允许奇点的存在, 但这样的函数必须有解析点, 不能在函数的每个点上都不解析.
2. “解析” 是一个显著强于 “可导” 的条件. 函数在一点解析和函数在一点可导不等价, 但函数在区域内解析和在区域内可导等价.
3. “解析” 是一个与 “区域”, “邻域” 密切相关的性质. 在研究函数在一点的解析性时, 我们实际上关注的对象是选定点的某个小邻域内函数的可微性.


现在, 我们将实变函数中的相关求导法则推广到复变函数中. 则有:

  1. 两个复变函数 和, 差, 商, 积 的求导法则均和实变函数中的相关情况所平行.
  2. 复合函数的求导法则和实变函数中的是一致的.
  3. 如果我们将复变函数以实变复值函数 z ( t ) = x ( t ) + i y ( t ) z(t) = x(t) + iy(t) z(t)=x(t)+iy(t) 的形式表示, 我们可以直接由定义得出: z ′ ( t ) = x ′ ( t ) + i y ′ ( t ) . z'(t) = x'(t) + iy'(t). z(t)=x(t)+iy(t).

解析函数的判定

在研究解析函数的判定问题前, 我们先介绍 C a u c h y − R i e m a n n Cauchy-Riemann CauchyRiemann 方程, 又称 C − R C-R CR 方程, C − R C-R CR 条件:

命题2.1.1 (Cauchy-Riemann 条件)

记复变元 z = x + i y z = x + iy z=x+iy 的一个定义在 D D D 内的函数

w = f ( z ) = u ( x , y ) + i v ( x , y ) . w = f(z) = u(x,y) + iv(x,y). w=f(z)=u(x,y)+iv(x,y).
u , v u,v u,v 满足
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} xu=yv,yu=xv
时, 原函数的实部和虚部独立.

我们常记以上的偏微分方程组为 C a u c h y − R i e m a n n Cauchy-Riemann CauchyRiemann 方程组.


下面, 我们给出复变函数 w = f ( z ) = u ( x , y ) + i v ( x , y ) w = f(z) = u(x,y) + iv(x,y) w=f(z)=u(x,y)+iv(x,y) D D D 内一点可微的充要条件:

定理2.1.1

设函数

w = f ( z ) = u ( x , y ) + i v ( x , y ) w = f(z) = u(x,y) + iv(x,y) w=f(z)=u(x,y)+iv(x,y)
在区域 D D D 内有定义, 则 f ( z ) f(z) f(z) D D D 内一点 z = x + i y z = x + iy z=x+iy 可微的充要条件:
1. 二元函数 u , v u,v u,v 在点 ( x , y ) (x,y) (x,y) 可微.
2. u , v u,v u,v 在点 ( x , y ) (x,y) (x,y) 满足Cauchy-Riemann条件.

[注]
上述条件满足时, f ( z ) f(z) f(z) 在点 z = x + i y z = x + iy z=x+iy 的导数可表为下列形式之一:
f ′ ( z ) = u x + i v x = v y − i u y = v y + i v x = u x − i u y . f'(z) = u_x + iv_x = v_y - iu_y = v_y + iv_x = u_x - iu_y. f(z)=ux+ivx=vyiuy=vy+ivx=uxiuy.

由以上定理和叙述, 可以得出:

定理2.1.2 (复变函数在区域上解析的充要条件)

设函数

w = f ( z ) = u ( x , y ) + i v ( x , y ) w = f(z) = u(x,y) + iv(x,y) w=f(z)=u(x,y)+iv(x,y)
在区域 D D D 内有定义, 则 f ( z ) f(z) f(z) D D D 上可微的充要条件:
1. 二元函数 u , v u,v u,v 在区域 D D D 上可微.
2. u , v u,v u,v 在点 ( x , y ) (x,y) (x,y) 满足Cauchy-Riemann条件.

[注]
1. Cauchy-Riemann 条件是判断复变函数解析性的主要条件.
2. 复变函数不可能在孤立点或直线/曲线上可微, 因为它在各点上均无法形成解析的圆邻域.

推论2.1.1

u ( x , y ) , v ( x , y ) u(x,y), v(x,y) u(x,y),v(x,y) 在区域 D D D 内各个一阶偏导数连续, 且 u , v u,v u,v 满足 Cauchy-Riemann 条件, 则原函数 f ( z ) f(z) f(z) D D D 上解析.


2.2 复变初等函数

下面, 我们将从指数函数开始, 将实变函数中的初等函数概念自然地推广到复数域中.

指数函数

定义2.2.1 (复指数函数)

对任何复数 z = x + i y z = x + iy z=x+iy: 用关系式

e z = e x + i y = e x ( c o s y + i s i n y ) e^z = e^{x + iy} = e^x(cosy + isiny) ez=ex+iy=ex(cosy+isiny)
定义指数函数 e z e^z ez.

[性质]
1. 若 z ∈ R z\in \mathbb{R} zR, 复指数函数的定义和实指数函数一致.
2. 指数函数在复平面上处处解析.
3. 指数函数仍然满足加法定理, 且其导数仍为它自身.
4. 复指数函数具有周期性: 由定义可知它是以 2 π 2\pi 2π 为基本周期的周期函数.
5. 在复数域上, lim ⁡ z → ∞ e z \lim_{z\rightarrow \infty}e^{z} limzez 无意义, 也就是 e ∞ e^\infty e 无意义.
6. e z e^z ez 为单值函数. “ e z e^z ez” 只是一个记号, 不存在幂的意义.


对数函数

定义2.2.2 (复对数函数)

定义复对数函数即为复指数函数的反函数. 也就是:若  e w = z e^w = z ew=z, 则称 w w w 为复数 z z z 的对数, 记为 w = L n z w = \mathtt{Ln}z w=Lnz.

也就是: L n z = l n ∣ z ∣ + i A r g z \mathtt{Ln}z = \mathtt{ln}|z| + i\mathtt{Arg}z Lnz=lnz+iArgz.

[注]
1. 定义说明, 复数 z z z 的对数仍为复数, 其实部为 z z z 的模的通常是自然对数, 其虚部为 z z z 的辐角的一般值. 实际上 ,虚部通常可以取无穷多个值, 也就是说负对数函数是一个多值函数.
2. 根据定义, 我们可以看出, 复对数是实对数在复数域内的推广, 在复数域内, 负数有对数, 但没有实对数; 且正实数的对数也是无穷多值的.
3. 复对数的运算也满足实对数的基本性质.
4. 复对数 L n z \mathtt{Ln}z Lnz 的每个分支在 除去原点和负实轴 的复平面内处处解析.


幂函数和乘幂

定义2.2.3 (复幂函数)

w = z a = e a L n z    ( z ≠ 0 , ∞ ; a ∈ C ) w = z^a = e^{a \mathtt{Ln}z} ~~(z\neq 0, \infty; a\in \mathbb{C}) w=za=eaLnz  (z=0,;aC) z z z 的一般幂函数.

a a a 为整数 n n n 时: z a z^{a} za z z z 的单值函数.
a a a 为有理数 p q \frac{p}{q} qp 时: z p q = w 0 e 2 k π p q z^{\frac{p}{q}} = w_{0}e^{2k\pi\frac{p}{q}} zqp=w0e2kπqp, 显然只能取得 q q q 个不同的值.
a a a 为无理数或虚数时: z a z^{a} za 是无穷多值的.

[注]
1. 幂函数 z n z^n zn 在复平面内 单值解析, 且 ( z n ) ′ = n z n − 1 (z^{n})' = nz^{n-1} (zn)=nzn1.
2. 幂函数 z 1 n z^{\frac{1}{n}} zn1 为多值函数, 其 n n n 个分支在 除去原点和复实轴的复平面上解析, 且 ( z 1 n ) ′ = 1 n z 1 n − 1 (z^{\frac{1}{n}})' = \frac{1}{n}z^{\frac{1}{n} - 1} (zn1)=n1zn11.
3. 除去 b = n b = n b=n b = 1 n b = \frac{1}{n} b=n1 外, w = z b w = z^{b} w=zb 为无穷值的, 其各个分支在 除去原点和复实轴的复平面上解析.


三角函数和双曲函数

由指数函数的定义, 我们可以立即推得复三角函数的定义:

定义2.2.4 (复三角函数)

定义

s i n z = e i y − e − i y 2 i , c o s z = e i y + e − i y 2 , sinz = \frac{e^{iy} - e^{-iy}}{2i}, cosz = \frac{e^{iy} + e^{-iy}}{2}, sinz=2ieiyeiy,cosz=2eiy+eiy,
并分别称为 z z z正弦函数余弦函数.


定义
t a n z = s i n z c o s z , c o t z = c o s z s i n z s e c z = 1 c o s z , c s c z = 1 s i n z , tanz = \frac{sinz}{cosz}, cotz = \frac{cosz}{sinz} \\ secz = \frac{1}{cosz},cscz = \frac{1}{sinz}, tanz=coszsinz,cotz=sinzcoszsecz=cosz1,cscz=sinz1,
并分别称为 z z z正切函数, 余切函数, 正割函数余割函数.

[性质]
1. z z z 为实数时, 其定义和实三角函数一致.
2. 复正,余弦函数在复平面上解析, 且满足实变函数情形下的求导法则.
3. 奇偶性, 周期性, 以及通常的三角恒等式.
4. 在复数域内, 正弦函数和余弦函数不再具备有界性.

5. 正/余切/割函数均在不使其分母为零的点处解析, 且满足实变函数情形下的求导法则.


反三角和反双曲函数

由上面的讨论知: 三角函数可以很容易地用指数函数表示, 因此反三角函数也可以使用指数函数的反函数-对数函数所表示.

不难得出:

A r c s i n z = − i L n ( i z + 1 − z 2 ) , Arcsinz = -i\mathtt{Ln}(iz + \sqrt{1-z^2}), Arcsinz=iLn(iz+1z2 ),
A r c c o s z = − i L n ( z + z 2 − 1 ) , Arccosz = -i\mathtt{Ln}(z + \sqrt{z^2-1}) , Arccosz=iLn(z+z21 ),
A r c t a n z = 1 2 i L n 1 + i z 1 − i z . Arctanz = \frac{1}{2i}\mathtt{Ln}\frac{1 + iz}{1 - iz}. Arctanz=2i1Ln1iz1+iz.

以及

A r c s h z = L n ( z + z 2 + 1 ) , Arcshz = \mathtt{Ln}(z + \sqrt{z^2 + 1}), Arcshz=Ln(z+z2+1 ),
A r c c h z = L n ( z + z 2 − 1 ) , Arcchz = \mathtt{Ln}(z + \sqrt{z^2-1}), Arcchz=Ln(z+z21 ),
A r c t h z = 1 2 L n 1 + z 1 − z . Arcthz = \frac{1}{2}\mathtt{Ln}\frac{1+z}{1-z}. Arcthz=21Ln1z1+z.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值