基于RFID标签的人工免疫网络数据分配方法

本文提出了一种基于人工免疫网络的RFID标签数据分配方法,旨在解决非线性背包问题,通过最小化未解释数据的总价值,优化有限内存中重要数据项的分配。利用相关矩阵和启发式算法,提高资源管理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#引用

##LaTex

@INPROCEEDINGS{7162855,
author={M. Wang and S. Feng and C. Ouyang and Z. Li},
booktitle={The 27th Chinese Control and Decision Conference (2015 CCDC)},
title={RFID tag oriented data allocation method using artificial immune network},
year={2015},
volume={},
number={},
pages={5218-5223},
keywords={artificial immune systems;knapsack problems;matrix algebra;radiofrequency identification;DA-aiNet algorithms;RFID tag oriented data allocation;artificial immune network;correlation matrix;heuristic algorithm;memory capacity;nonlinear knapsack problem;optimization problem;radiofrequency identification;unexplained data off tag;Correlation;Immune system;Optimization;Radiofrequency identification;Resource management;Sociology;0–1 knapsack problem;Artificial immune network;Optimization;Tag data allocation},
doi={10.1109/CCDC.2015.7162855},
ISSN={1948-9439},
month={May},}

##Normal

M. Wang, S. Feng, C. Ouyang and Z. Li, “RFID tag oriented data allocation method using artificial immune network,” The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, 2015, pp. 5218-5223.
doi: 10.1109/CCDC.2015.7162855
keywords: {artificial immune systems;knapsack problems;matrix algebra;radiofrequency identification;DA-aiNet algorithms;RFID tag oriented data allocation;artificial immune network;correlation matrix;heuristic algorithm;memory capacity;nonlinear knapsack problem;optimization problem;radiofrequency identification;unexplained data off tag;Correlation;Immune system;Optimization;Radiofrequency identification;Resource management;Sociology;0–1 knapsack problem;Artificial immune network;Optimization;Tag data allocation},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7162855&isnumber=7161655


#摘要

Radio frequency identification (RFID)

the patient data stored on RFID tag

only important data items can be allocated to a RFID tag with the limited memory

minimizing the total value of “unexplained” data off tag (TVUD)

  • the memory capacity
  • the correlation matrix

Artificial immune network

a nonlinear knapsack problem


#主要内容

all sampled data items set:

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

relationship between d i d_i di and d j d_j dj

  • perfectly linear correlative — r i j 2 = 1 r_{ij}^2=1 rij2=1

  • independent — r i j 2 = 0 r_{ij}^2=0 rij2=0

  • the explained sum of squares (ESS)

  • the total sum of squares (TSS)

这里写图片描述
这里写图片描述

a 0/1 knapsack problem

这里写图片描述

the likelihood that the ith data item cannot be explained by any data item on the tag:

这里写图片描述

优化目标:

这里写图片描述

w i w_i wi

  1. all w i w_i wi are equal to 4 bytes since each piece of information is modeled as a float point data type
  2. w i w_i wi are randomly determined in the interval [1,4]
  3. 本文 — a compact binary string + a data storage format (the data storage format identifier (DSFID))

###1 抗体表示

一个二进制串 — 长度为数据项个数


###2 适应值函数

这里写图片描述


###3 变异概率

这里写图片描述


###4 Suppression operator

相似度

这里写图片描述


###5 流程图

这里写图片描述


##试验

这里写图片描述

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值