蒙特卡洛树和alpha go

对Alpha-zero很感兴趣,所以耐心阅读了mastering the game of go without human knowledge 
Deepmind 官网的介绍:AlphaGo Zero: Learning from scratch 
在阅读的过程中,对蒙特卡洛树搜索算法不甚了解,下面翻译了youtube上一位英国教授的网络课程视频。

蒙特卡洛树搜索(MCTS)算法

MCTS算法是一种决策算法,每次模拟(simulation)分为4步: 
1. Tree traversal: 
UCB1(Si)=Vi¯¯¯+clogNni,c=2  
其中, Vi¯¯¯ 表示 Si 状态的平均value(下面会进一步解释) 
2. Node expansion 
3. Rollout (random simulation) 
4. Backpropagation

步骤1,2的流程图如下:

步骤1,2的流程图如下:

步骤3 Rollout 的细节:

Rollout(S_i):
    loop forever:
        if S_i is a terminal state:
            return value(S_i)
        A_i = random(available-actions(S_i))
        S_i = simulate(A_i,S_i)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

讲一个具体的例子:

  1. 树的初始状态: 
    T 表示总的 value, N 表示被访问的次数(visit count)。A表示动作(action).

这里写图片描述

第一次迭代(iteration)

从状态 S0 开始,要在下面两个动作中进行选择(假设只有两个动作可选),选择的标准就是 UCB1(Si) 值。显然可算得:

UCB1(S1)=UCB1(S2)=

这种情况下,我们就按顺序取第一个,即 A1 。从而,达到状态 S1

按照步骤1,2的流程图,我们现在需要判断目前的结点 S1 (current node)是不是叶节点,这里叶节点是指其没有被展开(expansion)过。显然,此结点没有被展开过,所以是叶节点。接下来,按照流程图,需要判断结点 S1 被访问的系数是否为0。是0,所以要进行Rollout。

Rollout其实就是在接下来的步骤中每一步都随机采取动作,直到停止点(围棋中的对局结束),得到一个最终的value。

假设Rollout最终值为20.

这里写图片描述

接下来,进行步骤4 Backpropagation,即利用Rollout最终得到的value来更新路径上每个结点的T,N值。

这里写图片描述

之后把Rollout的结果删除:

这里写图片描述

MCTS的想法就是要从 S0 出发不断的进行迭代,不断更新结点值,直到达到一定的迭代次数或者时间。

第二次迭代

我们从 S0 出发进行第二次迭代(iteration):

首先,计算下面两个结点 S1,S2  的  UCB1 值: 

UCB1(S1)=20    UCB1(S2)=

所以,选动作 A2 ,从而达到状态 S2

同上,现在要判断结点 S2 是否是叶结点。是,所以继续判断其被访问的次数。是0,所以进入Rollout, 假设Rollout最终值为10.

这里写图片描述

之后进行Backpropogation:

这里写图片描述

第三次迭代:

首先,计算UCB1值:

UCB1(S1)21.67   UCB1(S2)11.67

执行动作 A1 ,进入状态 S1 。 
是否是叶节点? 是。 
被访问次数是否为0?否。 
按照流程图所示,现在进入Node expansion步骤。同样假设只有两个动作可选。

这里写图片描述

选择 S3 进行 Rollout,假设Rollout最终值为0.

这里写图片描述

更新路径上每个结点的值,之后删除Rollout的值:

这里写图片描述

第四次迭代

首先,计算UCB1值:

UCB1(S1)=10+2log3211.48   UCB1(S2)12.10

选择 A2 ,进入状态 S2 , 接下来和第三次迭代一样的步骤:

这里写图片描述

更新路径上的结点:

这里写图片描述

假设我们设定最大迭代次数为4,则我们的迭代完毕。这时,利用得到的树来决定在 S0 处应该选择哪个动作。根据UCB1值,显然我们要选择动作 A2 .

以上就是MCTS的过程,是翻译自youtube.

以上内容如有错误,皆由博主负责,与youtube上教授无关。



以上是最简单的蒙特卡洛树,关于alpha的改进主要有几点。

1、在expand的时候使用概率进行选择

2、得到value的值的时候,使用两个神经网络分别得到,都是人类的知识。

3、为了并行计算,将选择过的路径值+3.进行锁住

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值