-
SVD回顾
SVD常用矩阵分解:A(m*n) = U(m*n)A(n*m)V(m*n), 在PCA中可以看到,SVD做矩阵压缩,假设压缩至K纬,只需要保留特征值最大的top即可,
那么有:A(m*n) ~ U(m*k)A(k*k)V(k*n) = U(m*k)V(k*n)
-
应用:
总结:可以看出模型的参数大大压缩而且效果基本上一样。
训练过程注意事项:
-
由于变换后的网络模型深度增加了,因此不要在变化后的网路上直接训练
-
首先在原始网络上进行训练(可以使用20%-40%的数据)
-
然后在变化后的网络上进行训练(仍然使用20%-40%的数据,这时候使用第二步的初值)
-
所有数据refine得最终结果