OrangePi AIpro 快速上手初体验

开发板开箱

1.1.包装

在这里插入图片描述

1.2.开发版

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Orange Pi AIpro Orange Pi官网-香橙派(Orange Pi)开发板

1.3.引脚分布

在这里插入图片描述

1.4开发板资源简介

1CPU配备了4核64位ARM处理器,其中默认预留1个给AI处理器使用
NPU集成了华为昇腾310BAI处理器,拥有4TFOPS的FP16算力核8TOPS的INT8算力
内存标配LPDDR4X的规格,有8G核16G两种配置可供选择
存储板载32MB的SPI Flash,内置1个Micro SD卡槽、1个eMMC插座、M.2插槽(2280规格)
以太网板载10/100/1000Mbps自适应RJ45口
无线通讯2.4+5双频WIFI核BT4.2
USB2个USB3.0 Host接口、1个Type-C接口(USB3.0)
摄像头预留了2个MIPI CSI 2 Lane接口
显示2个HDMI接口,支持同时4K@60HZ输出、一个MIPI DSI 2 Lane接口支持外接显示屏
音频除了2个HDMI接口还有一个3.5MM耳机孔
40PIN扩展口支持UART、I2C、SPI、PWM、GPIO等
风扇接口4PIN接口,12V供电,支持PWM调速
电池接口2PIN,用于接3串电池,支持快充
调试串口板载Micro USB接口的调试串口,特别称赞的是板载了USB转TTL,方便调试
操作系统目前支持Ubuntu-22.04核OpenEuler 22.03两种

在这里插入图片描述
在这里插入图片描述

2.开发板初探

2.1启动方式

  • TF 卡
  • eMMC
  • SSD(支持 NVMe SSD 和 SATA SSD)启动

在这里插入图片描述

在这里插入图片描述

拨码开关仅仅重启生效

2.2硬件连接

  • 连接usb转TTL串口需要一根micro usb 线

  • 打开Mobaxterm,打开Serial终端,设置波特率为115200

  • 接上电源

在这里插入图片描述

2.3登录

账号密码
rootMind@123
HwHiAiUserMind@123

注意复制账户和密码提示Login incorrect需要手动输入即可

在这里插入图片描述

2.4连接网络

2.4.1连接wifi指令

TP-LINK_5G_45A1是wifi名称

chejia12是密码

sudo nmcli dev wifi connect TP-LINK_5G_45A1 password  chejia12

以查看 wifi 的 IP 地址

ip a s wlan0
    
ifconfig

在这里插入图片描述

网络连接测试

nmcli dev wifi list

开发板连接了名字为TP-LINK_5G_45A1的WiFi网络

在这里插入图片描述

2.4.2固定ip

参考用户手册

sudo nmtui  
    

在这里插入图片描述

在这里插入图片描述

自动连接

在这里插入图片描述

在这里插入图片描述

自动连接设置

在这里插入图片描述

在这里插入图片描述

2.5使用ssh实现开发版的远程连接

首次进入需要输入密码,密码输入后提示自动保存密码,确认即可,以后就不再输入密码了

在这里插入图片描述

2.6gpio测试

40Pin接口定义为gpio

在这里插入图片描述

7:表示第7组gpio

6:代表第6个pin

	//查看gpio方向
	sudo gpio_operate get_direction 7 6
    //设置输出
    sudo  gpio_operate set_direction 7 6 1 
    //设置输入
    gpio_operate set_direction  7 6 0
    //设置gpio的高低电平    
    sudo gpio_operate set_value  7 6 1
    sudo gpio_operate set_value  7 6 0

在这里插入图片描述

2.7cpu 测试

lscpu

4核64位处理器+ AI处理器
在这里插入图片描述

2.8内存大小查看

cat /proc/meminfo

在这里插入图片描述

2.9磁盘大小查看

df -h

2.10查看昇腾芯片 NPU 卡的信息

npu-smi info

Device为310B4,芯片温度为47度,总内存为7.6G,已使用4.3G左右

在这里插入图片描述

2.11spi外设测试

查找外设

ls /dev/spi*

测试指令

sudo spidev_test -v -D /dev/spidev0.0   

接线

SPI0_SDOSPI0_SDI短接

在这里插入图片描述

在这里插入图片描述

3.开发板的cpu负载测试

3.1 自己写了一个程序如下

#include <stdint.h>
int main(int argc,char *argv[])
{
	if(argc==2)
	{
		while(1)
		{
			//printf("%s",argv[1]);
		}
	}
	return 1;
	
}

在这里插入图片描述

经过测试开发版没有出现风扇的那种开机猛转的情况,说明cpu还是很强的

3.2cpu CoreMark 测试

1.下载 CoreMark源码

git clone https://github.com/eembc/coremark 

编译

  make XCFLAGS="-DMULTITHREAD=4 -DUSE_PTHREAD -pthread"

测试

./coremark.exe


在这里插入图片描述

在这里插入图片描述
4个核心coremark分数累计为: 34003.485357

4开发板的AI样例体验

HDD增强示例

进入目录

cd samples

运行样例

./start_notebook.sh

复制地址进入网页

http://127.0.0.1:8888/lab?token=ef3136c877f3535bdefa152a533e83f79d39238d0c9c9d0e

在这里插入图片描述

关闭 Kenel

在这里插入图片描述
运行示例

结果显示
在这里插入图片描述

5.yoloV8跑起来

1.首先建立vnc的远程连接
在这里插入图片描述
2.依次输入指令

conda create -n tvm python=3.10
conda activate tvm
pip install ultralytics
yolo predict model=yolov8n.pt bus.jpg

在这里插入图片描述
在这里插入图片描述
pip install ultralytics下载可能失败使用这个指令即可

pip install timm==0.9.8 thop efficientnet_pytorch==0.7.1 einops grad-cam==1.4.8 dill==0.3.6 albumentations==1.3.1 pytorch_wavelets==1.3.0

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple


在这里插入图片描述
安装完成
在这里插入图片描述

3.下载源码
https://github.com/ultralytics/ultralytics

git clone https://github.com/ultralytics/ultralytics.git
git clone https://gitee.com/chejia12/ultralytics.git

4.通过MobaXterm软件ssh连接,将源码拷贝到主板系统当中

5.将yolov8n.pt也给下载下来,后面半精度训练的时候需要用到yolov8n.pt权重

6.测试代码

from ultralytics import YOLO


model = YOLO("yolov8n.yaml") 
model = YOLO("yolov8n.pt") 


model.train(data="coco128.yaml", epochs=3) 
metrics = model.val()  
results = model("bus.jpg")  
success = model.export(format="onnx") 

在这里插入图片描述

在这里插入图片描述
跑模型是的cpu消耗
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.总结

##优点

  • 华为这个4和的处理器还是很牛逼的,用户目标检测或用于边缘计算可以说是绰绰有余
  • 这个处理器在大模型使用的环境也是值得期待的,经测试yoloV8跑起来还是轻轻松松
  • 最后感谢活动委员会的大力力支持

不足之处

  • 图像界面不稳定,在VNC重启后登陆系统的时候,经常出现界面卡死问题,需要重启开发板。
  • npu模型的时候,内存严重不够用,如果不配置交换空间,系统直接会卡死
为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Car12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值