联邦学习、区块链论文笔记1

论文题目:DRL-Based Joint Resource Allocation and Device Orchestration for Hierarchical Federated Learning in NOMA-Enabled Industrial IoT

期刊:IEEE Transactions on Industrial Informatics

作者:Tantan Zhao, Fan Li, Senior Member, IEEE, Lijun He, Member, IEEE

关键字:分层联邦学习、资源分配、深度强化学习

1 摘要

        分层联邦学习相比与集中的联邦学习能够减轻网络负担和通信延迟。但分层联邦学习的瓶颈是大规模设备参与情况下高昂的通信和电能开销。本文提出了一个基于深度强化学习的NOMA环境下联合资源分配与设备编排策略,实现模型准确率提高,且降低IIOT环境下分层联邦学习的开销。 该问题被形式化为多目标优化问题,在计算能力和传输功率的限制下同时最小化延迟、电能、模型准确率。 提出基于DRL的算法求解。

2 创新点

  1. 建模多目标优化问题,通过优化资源分配和设备编排,实现在有限计算和通信资源下准确率、延迟、能耗多目标的优化。
  2. 基于深度强化学习的多目标优化问题求解。

3 架构与流程

  1. 云广播初始模型到所有终端设备。
  2. 设备利用本地数据进行训练。
  3. 本地训练达到准确率阈值后,将模型上传至边缘进行边缘聚合。 
  4. 边缘模型达到准确率阈值后,上传至云端进行全局聚合。 

4 系统模型

4.1 本地模型 

         设备集合M, 设备索引m,数据Dm, 模型参数Wm,设备m本地模型的loss function:

        本地准确率阈值\Theta [0,1], 为了达到该阈值,需要的迭代次数:

        

                κ is the constant related to learning task, m设备第i次本地迭代的模型更新:

终止条件为

      

cm一个样本的计算负载,rm 计算芯片的效用因子,计算时间和电能:

Tloc 次迭代后,终端m将模型上传到边缘服务器n,采用NOMA,可以允许多个设备在相同的channel同时传输。变量bm,n表示iot设备m和边缘服务器n的关联,等于1表示有关联,等于0表示无关联。pm表示m的传输功率,hm,n表示信道增益,|Sn|表示n个边缘服务器的终端数量。接收信号可以表示为:

信噪比SINR表示为:

传输速率:

        

通信延迟和电能消耗:

注:变量包括b、p

4.2 边缘聚合模型

 边缘服务器n的聚合模型参数:

 

 聚合后,边缘服务器n广播模型参数wn给所有终端执行下一轮本地模型训练。 这个过程不断迭代,直到边缘服务器n上的边缘模型符合精度要求为止。精度阈值为ξ,为了获得该阈值,边缘迭代次数可表示为:

        

μ是参数,边缘模型的迭代次数不仅和ξ有关还和\Theta有关。 MEC的计算能力比较强,电能也充足,因此模型聚合时间和广播消耗的电能在模型中可以忽略。在Tedge次边缘迭代后,Sn的总电能消耗可表示为:

延迟包括本地计算延迟和模型传输延迟 

 

  注:以最大为准,同步聚合

4.3 云聚合

边缘模型传输到云端进行全局觉和,边缘服务器n的延迟和电能消耗可以表示为:

dn标识模型大小,rn表示MEC server和远程云的传输速率。pn边缘n的传输功率 。云模型的参数w可以表示为:

云端聚合的电能和时间消耗被忽略。因此,一次全局聚合,系统范围的总电能和时间消耗为:

 

5 问题形式化

 

多目标,包括五个优化变量:

 

 两个模型精度

多目标问题,通过加权转换成一个单目标问题:

λ和X为权重,λ为前两项权重,X为前两项和与后两项和的权重。

6 求解

非线性混合整数规划问题,提出 基于 DRL的 DDPG 方法求解。

 状态空间

动作空间

层级奖励函数

基于DDPG算法的层级奖励函数

7 模拟实验

 DDPG算法中采用5层全连接神经网络,激活函数为relu。没用真正数据集做验证,验证了HFL的特性。

比较方法:

1. JRA-DO-DDPG 提出的联合优化算法

2. JO-FL 只优化资源,optimizing computing resource allocation, local model accuracy, computation and communication latency.

3.HFEL-RA  jointly optimizing edge association and resource allocation.

4.MADDPG jointly optimizes resource allocation and device orchestration to minimize delay, energy consumption and model accuracy.

 模拟1

不同学习率下算法的聚合性能。

 

模拟2

每个优化目标对奖励的影响

模拟3

本地模型准确率和边缘模型准确率在不同权重下的效果。

 

模拟4

不同模型准确率要求对延迟的影响 

 不同模型准确率要求对电能的影响 

 对比

模拟5

不同算法中,延迟与电能的关系

 8 总结

        论文在层级联邦学习模型下建立了一个优化问题,通过联合优化设备计算频率、传输功率、设备和边缘关联关系、本地模型准确率、边缘模型准确率5个变量, 实现电能、时间,准确率的多目标优化。提出了基于DDPG的解法,相关问题可以参考该解法。 实验采用模拟实验,没用真实数据集。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
联邦学习区块链都是近年来比较热门的技术,它们的结合可以实现更加安全、隐私保护的分布式机器学习。下面我会简单介绍一下联邦学习区块链的基本概念,并提供一些相关的代码资源供参考。 联邦学习是一种分布式机器学习技术,它允许多个参与方共同训练一个机器学习模型,而无需将数据集集中在一个地方进行处理。联邦学习的核心思想是将模型训练过程分成多个轮次,在每个轮次中,各个参与方将本地数据用于训练模型,然后将模型参数上传到服务器进行聚合,最终得到一个全局模型。联邦学习可以有效地保护数据隐私,因为参与方只需要上传模型参数,而不需要上传原始数据。同时,联邦学习还可以减少数据传输量,提高模型训练效率。 区块链是一种去中心化的分布式账本技术,它可以实现安全、可靠的数据交换和共享。区块链的核心思想是将交易记录打包成区块,然后通过密码学算法进行链接,形成一个不可篡改的链式结构。区块链可以保证交易的真实性和完整性,并且不需要一个中心化的机构进行监管和管理。目前,区块链已经广泛应用于数字货币、供应链管理、智能合约等领域。 将联邦学习区块链结合起来,可以实现更加安全、隐私保护的分布式机器学习。一种常见的做法是使用区块链作为联邦学习的底层网络,通过区块链的去中心化特性保证模型参数的安全共享。具体地,每个参与方将本地训练好的模型参数上传到区块链网络中,然后其他参与方可以通过区块链网络获取这些模型参数并进行聚合。由于区块链的去中心化特性,任何人都可以参与到这个联邦学习过程中,从而实现更大规模的模型训练。 下面是一些联邦学习区块链的相关代码资源: 1. TensorFlow Federated: TensorFlow Federated是由Google开发的一种基于TensorFlow的联邦学习框架,它提供了许多联邦学习算法和示例代码。GitHub链接:https://github.com/tensorflow/federated 2. PySyft: PySyft是一个Python库,可以用于实现联邦学习和安全多方计算。它支持基于WebSocket和Tor的通信方式,并且提供了许多加密算法和隐私保护技术。GitHub链接:https://github.com/OpenMined/PySyft 3. Hyperledger Fabric: Hyperledger Fabric是一个开源的区块链平台,可以用于搭建企业级联盟链。它支持智能合约、隐私保护、身份认证等功能,并且提供了完善的API和SDK。GitHub链接:https://github.com/hyperledger/fabric 4. TensorFlow On Chain: TensorFlow On Chain是一种基于区块链的机器学习框架,它可以实现联邦学习和模型共享。它使用以太坊作为底层区块链,并且支持智能合约和去中心化应用开发。GitHub链接:https://github.com/tensorflow/tfblockchain 希望以上资源能够对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值