Deep Reinforcement Learning based Resource Allocation Framework
这是什么?
这是一个基于深度强化学习(Deep Reinforcement Learning)的资源分配算法,它能够根据用户信道条件的好坏,动态地分配子信道和传输功率,最大化非正交多址调制(NOMA)系统的能量效率。
本项目基于Deep Q Learning Network(DQN)和Deep Deterministic Policy Gradient(DDPG)算法。
如果你是机器学习,特别是深度强化学习的新手,又正好在进行通信邻域的智能算法的研究,那么本项目是你了解强化学习算法的不二之选!当然,强化学习的优势之一就是它可以被轻易地迁移到其他应用场景之中。因此,如果你是别的邻域的研究人员,相信本项目一样对你有参考价值。
如何开始?
首先确保你安装了Python,以及下列库文件:
numpy:https://numpy.org/ 用于对矩阵,列表等数据进行处理。
pandas:https://pandas.pydata.org/ 一样是用于对数据进行处理,特别是对csv文件进行导出和导入。
keras:https://keras.io/zh/ 一个基于Python的高级神经网络API。
克隆本项目的代码到你喜欢的任意位置。然后,你只需要打开根目录下的run.py文件,即可以轻松运行!
(Note:在Pycharm下记得选择正确的Project Interpreter)
本项目通过深度强化学习算法,得到每个时隙下,适合

这是一个基于深度强化学习(DRL)的资源分配框架,利用DQN和DDPG算法动态分配子信道和功率,优化非正交多址(NOMA)系统的能量效率。项目适用于通信领域的智能算法研究,也可应用于其他场景。通过Python实现,依赖numpy, pandas和keras库。多DQN网络结构降低行动维度,提高算法效率。"
113145188,10543731,MySQL服务器连接管理与性能监控,"['数据库管理', 'MySQL性能', '数据库连接']
最低0.47元/天 解锁文章

2399

被折叠的 条评论
为什么被折叠?



