时间序列分析

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。


进行时间序列,用ts()函数将数据转换为时间序列格式,

模型拟合可通过arima()函数实现,

涉及的主要参数为

order(自回归项数、滑动平均项数及使时间序列成为平稳序列的差分阶数)

seasonal(序列表现出季节性趋势时需要,period)

method(参数估计方法,“CSS”为条件最小二乘法,“ML”为极大似然法,auto.arima()可以自动生成一个最优拟合模型)

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页