【图像分类】从LeNet-5说起

1.LeNet介绍:

LeNet是最早的经典卷积网络。在手写数字识别方面达到了惊人的效果,推动了手写数字识别的商用化。在LeNet推出的年代,多层感知机的概念已经不陌生,但是由于多层感知机的稠密链接造成参数数量过大,并没有在图像领域得到很好的应用。卷积神经网络是NN通向2d领域的钥匙,这把钥匙在后来逐渐演化为最强的特征提取器。

a.用于手写数字识别,输入为一维的灰度图像,输入图像维度为32\times 32\times 1

2.LeNet结构:

第一层(C1):卷积层。卷积核大小为5\times 5,共使用了6个filter,step为1。在卷积时没有使用padding(文章中有提到32\times 32的输入实际上比常用的28\times 28的输入要大,可以认为是在输入的时候就已经padding过了)。所以卷积得到的feature map维度为28\times28\times 6。第一层可训练参数为(5\times 5\pm \pm 1)\pm \times 6=156\left ( 5\times 5+1 \right )\times6=156,其中5*5表示是filter的大小,+1是加上了bias,*6表示有6个filter。

第二层(S2):池化层。采用的是2*2的池化,池化过程类似与平均池化。池化时把2*2区域求和然后乘上一个可训练系数,在加上bias,最后通过sigmoid,进行非线性化。池化没有overlap,所以可以认为step为2。池化后输出的feature map大小为14*14*6。可训练参数为2*6 = 12,2是每个池化过程包含了一个可训练系数和一个bias。

第三层(C3):卷积层。卷积核大小为5*5,共使用了16个filter,step为1。输入为第二层输出的feature map的多维组合,组合方法如下:

这种组合相比于所有featuremap都投入的优点在于:

1.减少了链接数量。

2.强制打破了网络的称性,不同的filter被喂入不同的输入,有助于训练出提取互补特征的filter。

参数数量:25*3*6(6个5*5的卷积核分别计算3个feature map)+25*4*9+25*6*1+16=1516

第四层(S4) :池化层。2*3的池化面积,与S2类似。输出feature map大小为5*5*16,参数数量为:2*16=32个。

第五层(C5):卷积层。卷积核大小为5*5,输出feature map大小为1*1*120,参数数量为:(16*5*5+1)*120 = 48120

第六层(F6):全链接层。采用的激活函数为tanh,使用了84个神经元,共有参数(120 + 1)*84=10164

输出层:10个神经元。采用RBF函数。输出的值越小,说明是某个类别的可能性越大。

logss function

MSE

3.LetNet特点:

a.卷积神经网络的开山之作,利用神经网络抽取的到的特征替代人类手工特征,为后续神经网络在图像领域的发展奠定了基础。

b.提出了池化结构,在后续的CNN相关网络中普遍使用。

基于Lenet-5的图像分类是一种经典的卷积神经网络架构,特别适用于手写数字识别任务。Lenet-5由两个卷积层、两个池化层和三个全连接层组成。 首先,输入图像经过第一个卷积层,使用多个卷积核进行卷积操作,提取出图像的低级特征,将卷积后的特征图通过非线性激活函数(如Sigmoid或ReLU)进行处理,得到第一个卷积特征图。 接下来,通过池化层对卷积特征图进行下采样,减少特征图的尺寸并保留重要的特征信息。池化操作可以降低模型对空间位置的敏感性,能够在保持特征不变的同时减少计算量。 然后,经过第二个卷积层,通过卷积操作对第一个卷积层的特征图再次进行卷积处理,得到更高级别的特征表示。同样地,经过非线性激活函数处理得到第二个卷积特征图。 再次进行池化操作,减少特征图的维度,然后通过展开操作将池化后的特征图转化为一维向量。 最后,通过三个全连接层,进行特征的融合和分类。在全连接层中进行线性变换和非线性激活操作,将最终的特征向量映射到对应的类别上。 基于Lenet-5的图像分类模型在训练时使用反向传播算法进行参数更新,通过最小化损失函数来优化模型。模型训练完成后,可以对新的图像进行分类预测,找到最有可能的类别。通过逐步优化和迭代,Lenet-5模型可以达到较高的分类准确度。 总而言之,基于Lenet-5的图像分类是一种基于卷积神经网络的经典方法,能够有效地提取图像特征并进行分类识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值