参考书籍:数据结构(C语言版)严蔚敏吴伟民编著清华大学出版社
本文中的代码可从这里下载:https://github.com/qingyujean/data-structure
1.有向无环图
有向无环图(directed acycline graph)简称DAG图,是描述一项工程或系统的进行过程的有效工具。对整个工程和系统,人们关心的是两个方面的问题:一是工程能否顺利进行;二是估算整个工程完成所必须的最短时间。
有向无环图的应用:1.拓扑排序;2.关键路径
在工程实践中,一个工程项目往往由若干个子项目组成,这些子项目间往往有多种关系:
1.先后关系,即必须在一子项目完成后,才能开始实施另一个子项目;
2.子项目之间无次序要求,即两个子项目可以同时进行,互不影响。
2.拓扑排序
我们用一种有向图来表示上述问题。在这种有向图中,顶点表示活动,有向边表示活动的优先关系,这种有向图叫做顶点表示活动的网络(Activity On Vertex Network)简称为AOV网。
在AOV网络中,如果顶点Vi的活动必须在顶点Vj的活动以前进行,则称Vi为Vj的前趋顶点,而称Vj为Vi的后继顶点。这种前趋后继关系有传递性。此外,任何活动i不能以它自己作为自己的前驱或后继,这叫做反自反性。
从前驱和后继的传递性和反自反性来看,AOV网中不能出现回路(有向环),回路表示顶点之间的先后关系进入了死循环。
判断AOV网是否有有向环的方法是对该AOV网进行拓扑排序,将AOV网中顶点排列成一个线性有序序列,若该线性序列中包含AOV网全部顶点,则AOV网无环,否则,AOV网中存在有向环,该AOV网所代表的工程是不可行的。
何谓“拓扑排序” ?
拓扑序列:
在AOV网中,若不存在回路,则所有活动可排列成一个线性序列,使得每个活动的所有前驱活动都排在该活动的前面,我们把此序列叫做拓扑序列。
拓扑排序:
由AOV网构造拓扑序列的过程叫拓扑排序。AOV网的拓扑序列不是唯一的,满足上述定义的任一线性序列都称为它的拓扑序列。
如何进行拓扑排序?
解决方法:
1)从有向图中选取一个没有前驱的顶点,并输出之;
2)从有向图中删去此顶点以及所有以它为尾的弧;
3)重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。后一种情况说明有向图中存在环。
拓扑排序算法的实现
1.为了实现拓扑排序的算法,对给定的有向图可采用邻接表作为它的存储结构。
2.将每个链表的表头结点构成一个顺序表,各表头结点的Data域存放相应顶点的入度值。每个顶点入度初值可随邻接表动态生成过程中累计得到。
3.在拓扑排序过程中,凡入度为零的顶点即是没有前趋的顶点,可将其取出列入有序序列中,同时将该顶点从图中删除掉不再考虑。
删去一个顶点时,所有它的直接后继顶点入度均减1,表示相应的有向边也被删除掉。
4.设置一个堆栈,将已检验到的入度为零的顶点标号进栈,当再出现新的无前趋顶点时,也陆续将其进栈。每次选入度为零的顶点时,只要取栈顶顶点即可。
用邻接表存储AOV网络,拓扑排序算法描述:
(1) 把邻接表中所有入度为零的顶点进栈;
(2) 在栈不空时:
① 退栈并输出栈顶的顶点 j;
② 在邻接表的第 j 个单链表中,查找顶点为 j 的所有直接后继顶点 k,并将 k 的入度减1。若顶点 k 的入度为零,则顶点 k 进栈;
③ 若栈空时输出的顶点个数不是 n,则有向图中有环路,否则拓扑排序完毕。
示例:
3.代码实现
3.1定义
/*
DAG 有向无环图的应用--拓扑排序:能否顺利完成工程,即检查是否存在环,
AOV网:顶点表示活动的网
除了拓扑排序检查环以外,还可以用DFS
当有向图中无环时,从图中某点进行深度优先遍历时,最先退出DFS函数的顶点即出度为0的顶点,是拓扑序列中的最后一个顶点,由此,按退出DFS函数的先后记录下来的顶点序列,即为逆向的拓扑有序序列
*/
//本次示例采用邻接表作为有向图的存储结构
#include<stdio.h>
#include<stdlib.h>
/*
图的表示方法
DG(有向图)或者DN(有向网):邻接矩阵、邻接表(逆邻接表--为求入度)、十字链表
UDG(无向图)或者UDN(无向网):邻接矩阵、邻接表、邻接多重表
*/
#define MAX_VERTEX_NUM 10//最大顶点数目
#define NULL 0
typedef int VRType;//对于带权图或网,则为相应权值
typedef int VertexType;//顶点类型
//typedef enum GraphKind {DG, DN, UDG, UDN}; //有向图:0,有向网:1,无向图:2,无向
typedef struct ArcNode{
int adjvex;//该弧所指向的顶点的在图中位置
//VRType w;//弧的相应权值
struct ArcNode *nextarc;//指向下一条弧的指针
}ArcNode;//弧结点信息
typedef struct VNode{
VertexType data;//顶点信息
ArcNode *firstarc;//指向第一条依附该顶点的弧的指针
}VNode, AdjVexList[MAX_VERTEX_NUM];//顶点结点信息
typedef struct{
AdjVexList vexs;//顶点向量
int vexnum, arcnum;//图的当前顶点数和弧数
//GraphKind kind;//图的种类标志
}ALGraph;//邻接表表示的图
#define OK 1
#define ERROR 0
typedef int status;
static int indegree[MAX_VERTEX_NUM] = {0};//存放各个顶点的入度的数组
3.2邻接表表示有向无环图
//若图G中存在顶点v,则返回v在图中的位置信息,否则返回其他信息
int locateVex(ALGraph G, VertexType v){
for(int i = 0; i < G.vexnum; i++){
if(G.vexs[i].data == v)
return i;
}
return -1;//图中没有该顶点
}
//采用邻接表表示法构造有向图G
void createDG(ALGraph &G){
printf("输入顶点数和弧数如:(5,3):");
scanf("%d,%d", &G.vexnum, &G.arcnum);
//构造顶点向量,并初始化
printf("输入%d个顶点(以空格隔开如:v1 v2 v3):", G.vexnum);
getchar();//吃掉换行符
for(int m = 0; m < G.vexnum; m++){
scanf("v%d", &G.vexs[m].data);
G.vexs[m].firstarc = NULL;//初始化为空指针重要!!!
getchar();//吃掉空格符
}
//构造邻接表
VertexType v1, v2;//分别是一条弧的弧尾和弧头(起点和终点)
//VRType w;//对于无权图或网,用0或1表示相邻否;对于带权图或网,则为相应权值
printf("\n每行输入一条弧依附的顶点(先弧尾后弧头)如:v1v2:\n");
fflush(stdin);//清除残余后,后面再读入时不会出错
int i = 0, j = 0;
for(int k = 0; k < G.arcnum; k++){
scanf("v%dv%d",&v1, &v2);
fflush(stdin);//清除残余后,后面再读入时不会出错
i = locateVex(G, v1);//弧起点
j = locateVex(G, v2);//弧终点
//采用“头插法”在各个顶点的弧链头部插入弧结点
ArcNode *p1 = (ArcNode *)malloc(sizeof(ArcNode));//构造一个弧结点,作为弧vivj的弧头(终点)
p1->adjvex = j;
//p1->w = w;
p1->nextarc = G.vexs[i].firstarc;
G.vexs[i].firstarc = p1;
/*因为是有向图,所以不必创建2个弧结点
ArcNode *p2 = (ArcNode *)malloc(sizeof(ArcNode));//构造一个弧结点,作为弧vivj的弧尾(起点)
p2->adjvex = i;
//p2->w = w;
p2->nextarc = G.vexs[j].firstarc;
G.vexs[j].firstarc = p2;
*/
}
}
3.3拓扑排序的实现
void findInDegree(ALGraph G, int indegree[]){
ArcNode *p;
for(int i = 0; i < G.vexnum; i++){
for(p = G.vexs[i].firstarc; p; p = p->nextarc){
indegree[p->adjvex]++;
}
}
}
//如有向图无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR
status toplogicalSort(ALGraph G){
//先初始化各个顶点的入度
findInDegree(G, indegree);
int stack[MAX_VERTEX_NUM];//维护一个栈来存放入度为0的顶点,当栈为空时,则说明图中不存在无前驱的顶点了(即没有入度为0的顶点了),说明图中无环
//否则如果此时仍然存在顶点,而且这些顶点有前驱,则说明有环
int top = 0;//栈顶指针
//将入度为0的顶点入栈
for(int i = 0; i < G.vexnum; i++){
if(!indegree[i]){
stack[top++] = i;
}
}
int count = 0;//对输出的顶点计数
ArcNode *p;
while(top != 0){//栈不为空
int topElemVex_i = stack[--top];//栈顶元素出栈,即第一个无前驱的顶点
printf("v%d ", G.vexs[topElemVex_i].data);//输出当前结点
count++;
//去掉以该结点为前驱的点与他的弧,以将相关顶点的入度减1的操作来实现
for(p = G.vexs[topElemVex_i].firstarc; p; p = p->nextarc){
indegree[p->adjvex]--;
if(!indegree[p->adjvex]){
stack[top++] = p->adjvex;//入度为0者入栈
}
}
}
printf("\n");
if(count < G.vexnum)//该有向图有回路
return ERROR;
else
return OK;
}
3.4演示
/*测试:
6,8
v1 v2 v3 v4 v5 v6
v1v2
v1v3
v1v4
v3v2
v4v3
v4v5
v6v4
v6v5
*/
int main(){
ALGraph G;
createDG(G);
//printAdjList(G);
printf("该图的拓扑排序序列为:");
toplogicalSort(G);
return 0;
}
分析:
对有 n 个顶点和 e 条弧的有向图而言,建立求各顶点的入度的时间复杂度为O(e);建零入度顶点栈的时间复杂度为O(n);在拓扑排序过程中,若有向图无环,则每个顶点进一次栈,出一次栈,入度减1的操作在 WHILE语句中总共执行e次,所以,总的时间复杂度为O(n+e)。
本文中的代码可从这里下载:https://github.com/qingyujean/data-structure