支持向量机(SVM)原理小结(3)支持向量回归SVR

SVM系列文章:

支持向量机(SVM)原理小结(1)线性支持向量机
支持向量机(SVM)原理小结(2)非线性支持向量机
支持向量机(SVM)原理小结(3)支持向量回归SVR

本博客中使用到的完整代码请移步至: 我的github:https://github.com/qingyujean/Magic-NLPer,求赞求星求鼓励~~~


1. 支持向量回归(SVR)

传统回归问题例如线性回归中,一般使用模型 f ( x ) = w ⋅ x + b f(x)=w\cdot x+b f(x)=wx+b的输出与真实值 y y y的差别来计算损失,如均方损失MSE,当 f ( x ) f(x) f(x) y y y完全一样时损失才为0。

而SVR假设能容忍$f(x)$和$y$之间最多由 ϵ \epsilon ϵ的偏差,即 ∣ f ( x ) − y ∣ > ϵ |f(x)-y|>\epsilon f(x)y>ϵ时才计算损失。这相当于以 f ( x ) = w ⋅ x + b f(x)=w\cdot x+b f(x)=wx+b为中心,构建了一个宽度为 2 ϵ 2\epsilon 2ϵ间隔带(见下图),如果训练样本落在间隔带内部,则认为预测正确,无损失

SVR间隔带

则SVR问题可形式化为:

max ⁡ w , b 1 2 ∥ w ∥ 2 s.t. ∣ ( w ⋅ x i + b ) − y i ∣ ≤ ϵ , i = 1 , 2 , ⋯   , N \begin{array}{cl}\max\limits_{w,b}&\frac{1}{2}\|w\|^2\\\text{s.t.}&|\left(w\cdot x_i+b\right)-y_i|\le \epsilon,\quad i=1,2,\cdots,N\end{array} w,bmaxs.t.21w2(wxi+b)yiϵ,i=1,2,,N

对每个样本点 ( x i , y i ) (x_i,y_i) (xi,yi)引入一个松弛变量 ξ i ≥ 0 \xi_i\ge0 ξi0,使得约束变为: ∣ w ⋅ x + b − y i ∣ ≤ ϵ + ξ i |w\cdot x +b-y_i|\le\epsilon+\xi_i wx+byiϵ+ξi,同时对每个松弛变量支付一个代价 ξ i \xi_i ξi这里的代价 ξ i \xi_i ξi,其实就是不满足约束的程度:满足约束的即在间隔带内部的,代价为0;勉强满足约束的即点落在间隔带外边附近的,代价比较小,完全背离约束的即落在间隔带外边而且隔的很远,代价最大)。此时就得到如下的约束最优化的原始问题:

min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ξ i  s.t.  ∣ ( w ⋅ x i + b ) − y i ∣ ≤ ϵ + ξ i ξ i ⩾ 0 , i = 1 , 2 , ⋯   , N \begin{array}{ll}\min\limits_{w, b, \xi} & \frac{1}{2}\|w\|^{2}+C \sum\limits_{i=1}^{N} \xi_{i} \\\text { s.t. } & |\left(w\cdot x_i+b\right)-y_i|\le \epsilon+\xi_i \\& \xi_{i} \geqslant 0, \quad i=1,2, \cdots, N\end{array} w,b,ξmin s.t. 21w2+Ci=1Nξi(wxi+b)yiϵ+ξiξi0,i=1,2,,N

软间隔SVR 间隔带

若允许间隔带两侧的松弛程度不同,即进入2个松弛变量 ξ i ≥ 0 , ξ ^ i ≥ 0 \xi_i\ge0,\hat\xi_i\ge0 ξi0,ξ^i0,那么就得到如下的约束最优化的原始问题:

min ⁡ w , b , ξ , ξ ^ i 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ( ξ i + ξ ^ i )  s.t.  ( w ⋅ x i + b ) − y i ⩽ ϵ + ξ i y i − ( w ⋅ x i + b ) ⩽ ϵ + ξ ^ i ξ i ⩾ 0 , ξ ^ i ⩾ 0 , i = 1 , 2 , ⋯   , N \begin{array}{ll}\min\limits_{w, b, \xi,\hat\xi_i} & \frac{1}{2}\|w\|^{2}+C \sum\limits_{i=1}^{N} (\xi_{i} +\hat\xi_{i}) \\\text { s.t. } & \left(w \cdot x_{i}+b\right) -y_i\leqslant \epsilon+\xi_{i} \\& y_i-\left(w \cdot x_{i}+b\right) \leqslant \epsilon+\hat\xi_{i} \\& \xi_{i} \geqslant 0, \hat\xi_{i} \geqslant 0,\quad i=1,2, \cdots, N\end{array} w,b,ξ,ξ^imin s.t. 21w2+Ci=1N(ξi+ξ^i)(wxi+b)yiϵ+ξiyi(wxi+b)ϵ+ξ^iξi0,ξ^i0,i=1,2,,N

1.1 学习算法—对偶形式

首先写出有约束最优化的原始问题拉格朗日无约束优化函数

L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) ≡ 1 2 ∥ w ∥ 2 + C ∑ i = 1 N ( ξ i + ξ ^ i ) + ∑ i = 1 N α i ( w ⋅ x i + b − y i − ϵ − ξ i ) + ∑ i = 1 N α ^ i ( y i − ( w ⋅ x i + b ) − ϵ − ξ ^ i ) − ∑ i = 1 N μ i ξ i − ∑ i = 1 N μ ^ i ξ ^ i L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) \equiv \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{N} (\xi_{i}+\hat\xi_i)+\sum_{i=1}^{N} \alpha_{i}\left(w \cdot x_{i}+b-y_i-\epsilon-\xi_{i}\right)+\sum_{i=1}^{N} \hat\alpha_{i}\left(y_i-(w \cdot x_{i}+b)-\epsilon-\hat\xi_{i}\right)-\sum_{i=1}^{N} \mu_{i} \xi_{i}-\sum_{i=1}^{N} \hat\mu_{i} \hat\xi_{i} L(w,b,ξ,ξ^,α,α^,μ,μ^)21w2+Ci=1N(ξi+ξ^i)+i=1Nαi(wxi+byiϵξi)+i=1Nα^i(yi(wxi+b)ϵξ^i)i=1Nμiξii=1Nμ^iξ^i

其中 α i ≥ 0 , α ^ i ≥ 0 , μ i ≥ 0 , μ ^ i ≥ 0 , i = 1 , . . . , N \alpha_i\ge0,\hat\alpha_i\ge0,\mu_i\ge0,\hat\mu_i\ge0,i=1,...,N αi0,α^i0,μi0,μ^i0,i=1,...,N,称为拉格朗日乘子。

约束最优化的原始问题可以表示为 拉格朗日极小极大问题 min ⁡ w , b , ξ , ξ ^ max ⁡ α , α ^ , μ , μ ^ L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) \min\limits_{w,b,\xi,\hat\xi}\max\limits_{\alpha,\hat\alpha,\mu,\hat\mu} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) w,b,ξ,ξ^minα,α^,μ,μ^maxL(w,b,ξ,ξ^,α,α^,μ,μ^)

由于 L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) L(w,b,ξ,ξ^,α,α^,μ,μ^)和约束条件函数为连续可微的凸函数,且满足KKT条件,则原始问题的解与对偶问题的解是等价的,那么可以通过求解对偶问题来求解原始问题。

原始问题的对偶问题拉格朗日极大极小问题 max ⁡ α , α ^ , μ , μ ^ min ⁡ w , b , ξ , ξ ^ L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) \max\limits_{\alpha,\hat\alpha,\mu,\hat\mu}\min\limits_{w,b,\xi,\hat\xi} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) α,α^,μ,μ^maxw,b,ξ,ξ^minL(w,b,ξ,ξ^,α,α^,μ,μ^)

(1)求 min ⁡ w , b , ξ , ξ ^ L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) \min\limits_{w,b,\xi,\hat\xi} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) w,b,ξ,ξ^minL(w,b,ξ,ξ^,α,α^,μ,μ^)

L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) L(w,b,ξ,ξ^,α,α^,μ,μ^)分别对 w w w, b b b ξ , ξ ^ \xi,\hat\xi ξ,ξ^求偏导数,并令其等于0。

∇ w L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) = w + ∑ i = 1 N ( α i − α ^ i ) x i = 0 ∇ b L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) = ∑ i = 1 N ( α i − α ^ i ) = 0 ∇ ξ i L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) = C − α i − μ i = 0 ∇ ξ ^ i L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) = C − α ^ i − μ ^ i = 0 \nabla_{w} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu)=w+\sum_{i=1}^{N} (\alpha_{i}-\hat\alpha_i) x_{i}=0 \\\nabla_{b} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu)=\sum_{i=1}^{N} (\alpha_{i}- \hat\alpha_{i})=0 \\\nabla_{\xi_i} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu)=C-\alpha_i-\mu_i=0 \\\nabla_{\hat\xi_i} L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu)=C-\hat\alpha_i-\hat\mu_i=0 wL(w,b,ξ,ξ^,α,α^,μ,μ^)=w+i=1N(αiα^i)xi=0bL(w,b,ξ,ξ^,α,α^,μ,μ^)=i=1N(αiα^i)=0ξiL(w,b,ξ,ξ^,α,α^,μ,μ^)=Cαiμi=0ξ^iL(w,b,ξ,ξ^,α,α^,μ,μ^)=Cα^iμ^i=0

w = ∑ i = 1 N ( α ^ i − α i ) x i ∑ i = 1 N ( α ^ i − α i ) = 0 C − α i − μ i = 0 C − α ^ i − μ ^ i = 0 w=\sum_{i=1}^{N}(\hat\alpha_i-\alpha_i)x_i\\\sum_{i=1}^{N} (\hat\alpha_{i}- \alpha_{i})=0 \\C-\alpha_i-\mu_i=0 \\C-\hat\alpha_i-\hat\mu_i=0 w=i=1N(α^iαi)xii=1N(α^iαi)=0Cαiμi=0Cα^iμ^i=0

代入得

L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N ( α ^ i − α i ) ( α ^ j − α j ) ( x i ⋅ x j ) + ∑ i = 1 N y i ( α ^ i − α i ) − ϵ ( α ^ i + α i ) \begin{aligned}L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) =&-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\hat\alpha_{i}-\alpha_i) (\hat\alpha_{j}-\alpha_j) \left(x_{i} \cdot x_{j}\right)\\&+\sum_{i=1}^{N} y_i(\hat\alpha_{i}-\alpha_i)-\epsilon(\hat\alpha_i+\alpha_i)\end{aligned} L(w,b,ξ,ξ^,α,α^,μ,μ^)=21i=1Nj=1N(α^iαi)(α^jαj)(xixj)+i=1Nyi(α^iαi)ϵ(α^i+αi)

min ⁡ w , b , ξ , ξ ^ L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) = − 1 2 ∑ i = 1 N ∑ j = 1 N ( α ^ i − α i ) ( α ^ j − α j ) ( x i ⋅ x j ) + ∑ i = 1 N y i ( α ^ i − α i ) − ϵ ( α ^ i + α i ) \begin{aligned}\min_{w,b,\xi,\hat\xi}L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu)=&-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\hat\alpha_{i}-\alpha_i) (\hat\alpha_{j}-\alpha_j) \left(x_{i} \cdot x_{j}\right)\\&+\sum_{i=1}^{N} y_i(\hat\alpha_{i}-\alpha_i)-\epsilon(\hat\alpha_i+\alpha_i)\end{aligned} w,b,ξ,ξ^minL(w,b,ξ,ξ^,α,α^,μ,μ^)=21i=1Nj=1N(α^iαi)(α^jαj)(xixj)+i=1Nyi(α^iαi)ϵ(α^i+αi)

(2)求 min ⁡ w , b , ξ , ξ ^ L ( w , b , ξ , ξ ^ , α , α ^ , μ , μ ^ ) \min\limits_{w,b,\xi,\hat\xi}L(w, b, \xi, \hat\xi, \alpha, \hat\alpha, \mu, \hat\mu) w,b,ξ,ξ^minL(w,b,ξ,ξ^,α,α^,μ,μ^) α , α ^ \alpha,\hat\alpha α,α^的极大,即对偶问题

max ⁡ α , α ^ − 1 2 ∑ i = 1 N ∑ j = 1 N ( α ^ i − α i ) ( α ^ j − α j ) ( x i ⋅ x j ) + ∑ i = 1 N y i ( α ^ i − α i ) − ϵ ( α ^ i + α i )  s.t.  ∑ i = 1 N ( α ^ i − α i ) = 0 C − α i − μ i = 0 C − α ^ i − μ ^ i = 0 α i ⩾ 0 , α ^ i ⩾ 0 μ i ⩾ 0 , μ ^ i ⩾ 0 , i = 1 , 2 , ⋯   , N \begin{array}{ll}\max\limits_{\alpha,\hat\alpha} & -\frac{1}{2} \sum\limits_{i=1}^{N} \sum\limits_{j=1}^{N} (\hat\alpha_{i}-\alpha_i) (\hat\alpha_{j}-\alpha_j) \left(x_{i} \cdot x_{j}\right) \\&+\sum\limits_{i=1}^{N} y_i(\hat\alpha_{i}-\alpha_i)-\epsilon(\hat\alpha_i+\alpha_i)\\\text { s.t. } & \sum\limits_{i=1}^{N} (\hat\alpha_{i}- \alpha_{i})=0 \\& C-\alpha_i-\mu_i=0 \\&C-\hat\alpha_i-\hat\mu_i=0\\& \alpha_{i} \geqslant 0,\hat\alpha_{i} \geqslant 0\\& \mu_i \geqslant 0,\hat\mu_i \geqslant 0 , \quad i=1,2, \cdots, N\end{array} α,α^max s.t. 21i=1Nj=1N(α^iαi)(α^jαj)(xixj)+i=1Nyi(α^iαi)ϵ(α^i+αi)i=1N(α^iαi)=0Cαiμi=0Cα^iμ^i=0αi0,α^i0μi0,μ^i0,i=1,2,,N

等价于(利用等式 C − α i − μ i = 0 C-\alpha_i-\mu_i=0 Cαiμi=0 C − α ^ i − μ ^ i = 0 C-\hat\alpha_i-\hat\mu_i=0 Cα^iμ^i=0消去 μ i \mu_i μi μ ^ i \hat\mu_i μ^i,并将求max转化为求min):

min ⁡ α , α ^ i 1 2 ∑ i = 1 N ∑ j = 1 N ( α ^ i − α i ) ( α ^ j − α j ) ( x i ⋅ x j ) − ∑ i = 1 N y i ( α ^ i − α i ) + ϵ ( α ^ i + α i )  s.t.  ∑ i = 1 N ( α ^ i − α i ) = 0 0 ⩽ α i ⩽ C 0 ⩽ α ^ i ⩽ C , i = 1 , 2 , ⋯   , N \begin{array}{ll}\min\limits_{\alpha,\hat\alpha_i} & \frac{1}{2} \sum\limits_{i=1}^{N} \sum\limits_{j=1}^{N} (\hat\alpha_i-\alpha_{i}) (\hat\alpha_j-\alpha_{j})\left(x_{i} \cdot x_{j}\right)\\&-\sum\limits_{i=1}^{N} y_i(\hat\alpha_{i}-\alpha_i)+\epsilon(\hat\alpha_i+\alpha_i) \\\text { s.t. } & \sum\limits_{i=1}^{N} (\hat\alpha_{i}- \alpha_{i})=0 \\& 0 \leqslant\alpha_{i} \leqslant C\\& 0 \leqslant\hat\alpha_{i} \leqslant C, \quad i=1,2, \cdots, N\end{array} α,α^imin s.t. 21i=1Nj=1N(α^iαi)(α^jαj)(xixj)i=1Nyi(α^iαi)+ϵ(α^i+αi)i=1N(α^iαi)=00αiC0α^iC,i=1,2,,N

上式即为 对偶最优化问题

对偶最优化问题对 α , α ^ \alpha,\hat\alpha α,α^的解设为 α ∗ , α ^ ∗ \alpha^*,\hat\alpha^* α,α^,那么原始问题最优化问题的解 w ∗ , b ∗ w^*,b^* w,b也可求出。

即求得

w ∗ = ∑ i = 1 N ( α ^ i ∗ − α i ∗ ) x i w^*=\sum_{i=1}^{N}(\hat\alpha_i^*-\alpha_i^*)x_i w=i=1N(α^iαi)xi

任选一个 α ∗ \alpha^* α的分量 α j ∗ \alpha_j^* αj满足 0 < α j ∗ < C 0 <\alpha_{j}^* < C 0<αj<C用来求 b ∗ b^* b(因为 μ i = C − α i > 0 \mu_i=C-\alpha_i>0 μi=Cαi>0,而 μ i ξ i = 0 \mu_i\xi_i=0 μiξi=0,所以 ξ i = 0 \xi_i=0 ξi=0):

b ∗ = y j + ϵ − ∑ i = 1 N ( α ^ i ∗ − α i ∗ ) ( x i ⋅ x j ) b^*=y_j+\epsilon-\sum_{i=1}^{N}(\hat\alpha_i^*-\alpha_i^*)(x_i\cdot x_j) b=yj+ϵi=1N(α^iαi)(xixj)

则最后的SVR模型可表示为:

∑ i = 1 N α i ∗ y i ( x ⋅ x i ) + b ∗ = 0 \sum_{i=1}^{N}\alpha_i^*y_i(x\cdot x_i)+b^*=0 i=1Nαiyi(xxi)+b=0

分类决策函数可以写成

f ( x ) = ∑ i = 1 N ( α ^ i ∗ − α i ∗ ) ( x i ⋅ x ) + b ∗ f(x)=\sum_{i=1}^{N}(\hat\alpha_i^*-\alpha_i^*)(x_i\cdot x)+b^* f(x)=i=1N(α^iαi)(xix)+b

对偶算法中, f ( x ) f(x) f(x)只依赖于输入 x x x 和 训练样本 x i x_i xi的内积,而上式称为 线性支持向量回归的对偶形式

1.2 核函数

考虑非线性映射 ϕ ( x ) \phi(x) ϕ(x)核函数 K ( x , z ) K(x,z) K(x,z),则容易得到非线性支持向量回归的对偶形式

f ( x ) = ∑ i = 1 N ( α ^ i ∗ − α i ∗ ) K ( x , x i ) + b ∗ f(x)=\sum_{i=1}^{N}(\hat\alpha_i^*-\alpha_i^*)K(x,x_i)+b^* f(x)=i=1N(α^iαi)K(x,xi)+b

其中 K ( x , x i ) = ϕ ( x ) ⋅ ϕ ( x i ) K(x,x_i)=\phi(x)\cdot\phi(x_i) K(x,xi)=ϕ(x)ϕ(xi)核函数

1.3 支持向量

注意对偶问题中 w ∗ w^* w的求解式: w ∗ = ∑ i = 1 N ( α ^ i ∗ − α i ∗ ) x i w^*=\sum\limits_{i=1}^{N}(\hat\alpha_i^*-\alpha_i^*)x_i w=i=1N(α^iαi)xi,只有 α ^ i ∗ − α i ∗ ≠ 0 \hat\alpha_i^*-\alpha_i^*\neq 0 α^iαi=0才对求解 w ∗ w^* w有影响(保证了解的 稀疏性,最终模型仅与支持向量有关),所以满足 α ^ i ∗ − α i ∗ ≠ 0 \hat\alpha_i^*-\alpha_i^*\neq 0 α^iαi=0的样本 x i x_i xi 就称为 支持向量

由KKT互补条件知, α i ( w ⋅ x i + b − y i − ϵ − ξ i ) = 0 \alpha_{i}\left(w \cdot x_{i}+b-y_i-\epsilon-\xi_{i}\right)=0 αi(wxi+byiϵξi)=0,当 α i > 0 \alpha_i>0 αi>0时,则一定有 w ⋅ x i + b − y i − ϵ − ξ i = 0 w \cdot x_{i}+b-y_i-\epsilon-\xi_{i}=0 wxi+byiϵξi=0,即 w ⋅ x i + b − y i = ϵ + ξ i w \cdot x_{i}+b-y_i=\epsilon+\xi_{i} wxi+byi=ϵ+ξi,同理,如要 α ^ i > 0 \hat\alpha_i>0 α^i>0,则一定有 y i − ( w ⋅ x i + b ) − ϵ − ξ i = 0 y_i-(w \cdot x_{i}+b)-\epsilon-\xi_{i}=0 yi(wxi+b)ϵξi=0,即 y i − ( w ⋅ x i + b ) = ϵ + ξ i y_i-(w \cdot x_{i}+b)=\epsilon+\xi_{i} yi(wxi+b)=ϵ+ξi。换言之,如若要 α i \alpha_i αi α ^ i \hat\alpha_i α^i不为0,当且仅当即实例 x i x_i xi一定 不在 ϵ − \epsilon- ϵ间隔带内部

此外,因为实例点一定在 ϵ − \epsilon- ϵ间隔带的某一侧,所以 w ⋅ x i + b − y i − ϵ − ξ i = 0 w \cdot x_{i}+b-y_i-\epsilon-\xi_{i}=0 wxi+byiϵξi=0 y i − ( w ⋅ x i + b ) − ϵ − ξ i = 0 y_i-(w \cdot x_{i}+b)-\epsilon-\xi_{i}=0 yi(wxi+b)ϵξi=0不可能同时成立,所以 α i 和 α ^ i \alpha_i和\hat\alpha_i αiα^i中至少必有一个为0。

2. 模型评价

SVM系列至此就介绍完了,这里对该模型做一个评价总结。评价内容摘自刘建平老师的支持向量机原理(五)线性支持回归

SVM算法是一个很优秀的算法,在集成学习和神经网络之类的算法没有表现出优越性能前,SVM基本占据了分类模型的统治地位。目前则是在大数据时代的大样本背景下,SVM由于其在大样本时超级大的计算量,热度有所下降,但是仍然是一个常用的机器学习算法。

优点

  • 解决高维特征的分类问题和回归问题很有效,在特征维度大于样本数时依然有很好的效果。
  • 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。
  • 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。
  • 样本量不是海量数据的时候,分类准确率高,泛化能力强。

缺点

  • 如果特征维度远远大于样本数,则SVM表现一般。
  • SVM在样本量非常大,核函数映射维度非常高时,计算量过大,不太适合使用。
  • 非线性问题的核函数的选择没有通用标准,难以选择一个合适的核函数。
  • SVM对缺失数据敏感。

完整代码地址

完整代码请移步至: 我的github:https://github.com/qingyujean/Magic-NLPer,求赞求星求鼓励~~~

最后:如果本文中出现任何错误,请您一定要帮忙指正,感激~

参考

[1] 西瓜书-机器学习  周志华
[2] 支持向量机原理(五)线性支持回归  刘建平

  • 9
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值