梯度下降算法(Gradient Descent)

本文介绍了梯度下降算法的基础知识,包括梯度的概念、公式求导、学习率选择和代码实现。讨论了梯度下降能保证找到局部最优解的性质,并提供了损失函数的求导过程。最后,探讨了如何确定下降速率以及自适应学习率的优势。
摘要由CSDN通过智能技术生成

最近在搞论文,需要用梯度下降算法求解,所以重新整理分享在这里。主要包括梯度介绍、公式求导、学习速率选择、代码实现。

梯度下降的性质:

1.求得的解和选取的初始点有关

2.可以保证找到局部最优解,因为梯度最终会减小为0,则步长与梯度的乘积会自动越来越小。

梯度简介

一个多元函数的在某点的梯度方向是函数值在该点增长最快的方向,即方向导数取最大值的方向。

问题描述公式求导学习率选择

假设要学习这么一个函数:


那么损失函数可以定义成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值