数论中的偶数阶Abel群的阶

问题:求模2+3i、3+6i的完全剩余系、既约剩余系。
(Z[i]/(4))^*=C_4×C_2,3个2阶元,4个4阶元
(Z[i]/(3))^*=C_8
(Z[i]/(2))^*=C_2
(Z[i]/(2+3i))^*=C_12
(Z[i]/(1+2i))^*=C_4
(Z[i]/(3+6i))^*=C_8×C_4
g++ -o UnMulTableE4 UnMulTableE4.cpp
./UnMulTableE4 4 0
模4的既约剩余系:1,i,3i,1+2i,2+1i,2+3i,3,3+2i
Φ(4)=8
1 2 3 4 5 6 7 8 
2 7 1 5 8 4 3 6 
3 1 7 6 4 8 2 5 
4 5 6 1 2 3 8 7 
5 8 4 2 7 1 6 3 
6 4 8 3 1 7 5 2 
7 3 2 8 6 5 1 4 
8 6 5 7 3 2 4 1 
./UnMulTableE4 3 0
模3的既约剩余系:1,i,2i,1+1i,1+2i,2,2+1i,2+2i
Φ(3)=8
1 2 3 4 5 6 7 8 
2 6 1 7 4 3 8 5 
3 1 6 5 8 2 4 7 
4 7 5 3 6 8 1 2 
5 4 8 6 2 7 3 1 
6 3 2 8 7 1 5 4 
7 8 4 1 3 5 2 6 
8 5 7 2 1 4 6 3
./UnMulTableE4 2 0
模2的既约剩余系:1,i
Φ(2)=2
1 2 
2 1 
./UnMulTableE4 1 2
模1+2i的既约剩余系:1,2,3,4
Φ(1+2i)=4
1 2 3 4 
2 4 1 3 
3 1 4 2 
4 3 2 1 
./UnMulTableE4 2 3
模2+3i的既约剩余系:1,2,3,4,5,6,7,8,9,10,11,12
Φ(2+3i)=12
1 2 3 4 5 6 7 8 9 10 11 12 
2 4 6 8 10 12 1 3 5 7 9 11 
3 6 9 12 2 5 8 11 1 4 7 10 
4 8 12 3 7 11 2 6 10 1 5 9 
5 10 2 7 12 4 9 1 6 11 3 8 
6 12 5 11 4 10 3 9 2 8 1 7 
7 1 8 2 9 3 10 4 11 5 12 6 
8 3 11 6 1 9 4 12 7 2 10 5 
9 5 1 10 6 2 11 7 3 12 8 4 
10 7 4 1 11 8 5 2 12 9 6 3 
11 9 7 5 3 1 12 10 8 6 4 2 
12 11 10 9 8 7 6 5 4 3 2 1 
./UnMulTableE4 3 6模3+6i的既约剩余系:1,i,2i,1+1i,2,2+1i,2+2i,3+2i,4,4+1i,4+2i,5+1i,5+2i,6+1i,7,7+1i,7+2i,8,8+2i,9+1i,9+2i,10+1i,10+2i,11,11+1i,12+1i,12+2i,13,13+2i,14,14+1i,14+2i
Φ(3+6i)=32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
2 30 28 31 3 32 29 9 14 12 10 13 11 24 26 25 22 27 23 5 1 6 4 8 7 18 15 20 16 21 19 17 
3 28 24 29 14 10 6 18 27 23 19 4 31 15 21 17 13 2 25 9 5 11 7 26 22 1 30 8 32 20 16 12 
4 31 29 3 7 15 14 17 22 21 30 1 2 6 10 8 18 13 20 25 23 27 5 32 9 12 11 16 24 19 28 26 
5 3 14 7 9 11 22 26 18 19 31 23 4 27 30 32 12 1 16 8 20 13 25 15 17 21 2 24 6 28 29 10 
6 32 10 15 11 20 30 4 31 9 8 14 24 19 25 1 3 29 18 13 22 28 27 23 2 7 16 12 21 17 26 5 
7 29 6 14 22 30 27 12 13 20 28 5 3 11 19 26 1 4 8 17 25 2 9 10 18 23 31 32 15 16 24 21 
8 9 18 17 26 4 12 30 21 29 7 16 25 1 3 11 19 20 6 15 24 23 32 2 10 28 5 27 13 14 22 31 
9 14 27 22 18 31 13 21 1 16 29 25 7 2 28 10 23 5 32 26 8 4 17 30 12 20 3 15 11 24 6 19 
10 12 23 21 19 9 20 29 16 27 18 15 26 25 22 3 24 32 2 31 11 8 30 7 28 6 17 4 5 13 1 14 
11 10 19 30 31 8 28 7 29 18 26 27 15 16 17 5 14 6 1 4 13 24 2 25 3 22 32 23 20 12 21 9 
12 13 4 1 23 14 5 16 25 15 27 26 18 7 6 28 8 17 30 19 10 9 21 29 20 32 22 31 3 11 2 24 
13 11 31 2 4 24 3 25 7 26 15 18 27 29 32 20 9 22 21 23 12 14 1 16 5 17 6 19 28 10 30 8 
14 24 15 6 27 19 11 1 2 25 16 7 29 30 20 12 4 3 17 18 9 31 22 21 13 5 28 26 10 8 32 23 
15 26 21 10 30 25 19 3 28 22 17 6 32 20 9 4 29 24 13 2 27 16 11 5 31 14 8 1 23 18 12 7 
16 25 17 8 32 1 26 11 10 3 5 28 20 12 4 27 30 19 14 6 29 21 24 13 15 31 23 22 18 7 9 2 
17 22 13 18 12 3 1 19 23 24 14 8 9 4 29 30 20 25 15 10 32 5 26 31 21 16 7 11 2 6 27 28 
18 27 2 13 1 29 4 20 5 32 6 17 22 3 24 19 25 9 10 21 26 7 12 28 23 8 14 30 31 15 11 16 
19 23 25 20 16 18 8 6 32 2 1 30 21 17 13 14 15 10 3 29 31 26 28 22 24 11 12 7 9 4 5 27 
20 5 9 25 8 13 17 15 26 31 4 19 23 18 2 6 10 21 29 24 28 12 16 27 32 30 1 14 22 3 7 11 
21 1 5 23 20 22 25 24 8 11 13 10 12 9 27 29 32 26 31 28 30 17 19 14 16 15 18 3 7 2 4 6 
22 6 11 27 13 28 2 23 4 8 24 9 14 31 16 21 5 7 26 12 17 3 18 19 1 25 29 10 30 32 15 20 
23 4 7 5 25 27 9 32 17 30 2 21 1 22 11 24 26 12 28 16 19 18 20 6 8 10 13 29 14 31 3 15 
24 8 26 32 15 23 10 2 30 7 25 29 16 21 5 13 31 28 22 27 14 19 6 1 11 3 20 18 12 9 17 4 
25 7 22 9 17 2 18 10 12 28 3 20 5 13 31 15 21 23 24 32 16 1 8 11 26 19 4 6 27 29 14 30 
26 18 1 12 21 7 23 28 20 6 22 32 17 5 14 31 16 8 11 30 15 25 10 3 19 24 9 2 4 27 13 29 
27 15 30 11 2 16 31 5 3 17 32 22 6 28 8 23 7 14 12 1 18 29 13 20 4 9 24 21 19 26 10 25 
28 20 8 16 24 12 32 27 15 4 23 31 19 26 1 22 11 30 7 14 3 10 29 18 6 2 21 9 17 5 25 13 
29 16 32 24 6 21 15 13 11 5 20 3 28 10 23 18 2 31 9 22 7 30 14 12 27 4 19 17 26 25 8 1 
30 21 20 19 28 17 16 14 24 13 12 11 10 8 18 7 6 15 4 3 2 32 31 9 29 27 26 5 25 1 23 22 
31 19 16 28 29 26 24 22 6 1 21 2 30 32 12 9 27 11 5 7 4 15 3 17 14 13 10 25 8 23 20 18 
32 17 12 26 10 5 21 31 19 14 9 24 8 23 7 2 28 16 27 11 6 20 15 4 30 29 25 13 1 22 18 3

计算模n的Dirichlet特征:
∵ φ(2) = 1、φ(3) = 2、φ(4) = 2、φ(5) = 4、φ(6) = 2、φ(10) = 4
∴只有1种模2特征。
^U(2):
χ1(n):1,
共有2种两两不同的模3特征、模4特征、模6特征。
^U(3)、^U(6):
χ1(n):1,1,
χ2(n):1,-1,
共有4种两两不同的模5特征、模10特征。
^U(5):{忠实表示:1=1,PrimitiveRootMod(5)=2=E(4),3=-E(4),4=-1}
χ1(n):1,1,1,1,
χ2(n):1,E(4),-E(4),-1,
χ3(n):1,-E(4),E(4),-1,
χ4(n):1,-1,-1,1,
^U(10):{忠实表示:1=1,PrimitiveRootMod(10)=3=E(4),9=-1,7=-E(4)}
χ1(n):1,1,1,1,
χ2(n):1,-1,1,-1,
χ3(n):1,E(4),-1,-E(4),
χ4(n):1,-E(4),-1,E(4),
^U(5)=C_4
i:=E(4);;X1:=[1,1,1,1];X2:=[1,i,-i,-1];X3:=[1,-i,i,-1];X4:=[1,-1,-1,1];XL:=[X1,X2,X3,X4];;for j in [1..4] do for k in [1..4] do J:=XL[j];K:=XL[k];JK:=[];for m in [1..4] do Add(JK,J[m]*K[m]);od;jk:=Position(XL,JK);Print(jk," ");od;Print("\n");od;
G4ElementToOrder(0)=1=ord(X1(n))
G4ElementToOrder(1)=4=ord(X2(n))
G4ElementToOrder(2)=4=ord(X3(n))
G4ElementToOrder(3)=2=ord(X4(n))
G4有1个1阶元,1个2阶元,2个4阶元
^U(10)=C_4
i:=E(4);;X1:=[1,1,1,1];X2:=[1,-1,1,-1];X3:=[1,i,-1,-i];X4:=[1,-i,-1,i];XL:=[X1,X2,X3,X4];;for j in [1..4] do for k in [1..4] do J:=XL[j];K:=XL[k];JK:=[];for m in [1..4] do Add(JK,J[m]*K[m]);od;jk:=Position(XL,JK);Print(jk," ");od;Print("\n");od;
G4ElementToOrder(0)=1=ord(X1(n))
G4ElementToOrder(1)=2=ord(X2(n))
G4ElementToOrder(2)=4=ord(X3(n))
G4ElementToOrder(3)=4=ord(X4(n))
G4有1个1阶元,1个2阶元,2个4阶元
U(5)={ZmodnZObj( 1, 5 ), ZmodnZObj( 2, 5 ) ,  ZmodnZObj( 3, 5 ), ZmodnZObj( 4, 5 )}
U(10)={ZmodnZObj( 1, 10 ), ZmodnZObj( 3, 10 ) ,  ZmodnZObj( 7, 10 ), ZmodnZObj( 9, 10 )}
gap> L1:=[1,E(4),-1,-E(4)];;List(L1,Order);
[ 1, 4, 2, 4 ]
gap> m:=5;;for n in [1..m-1] do if(Gcd(n,m)=1) then Print(n,"->",OrderMod(n,m),"阶元\n");fi;od;
1->1阶元
2->4阶元
3->4阶元
4->2阶元
gap> m:=10;;for n in [1..m-1] do if(Gcd(n,m)=1) then Print(n,"->",OrderMod(n,m),"阶元\n");fi;od;
1->1阶元
3->4阶元
7->4阶元
9->2阶元
问题1:设χ_1是模q_1的特征,χ_2是模q_2的特征,则χ_1χ_2 是模[q_1,q_2]的特征。当q_1≠q_2时,这里特征的乘法怎么定义?
定理:n阶Abel群G有且仅有n个不同的特征,G的特征标表^G中的行、列经过重排后是唯一确定的,且^G=G。
χ1(n)是主特征(在G上恒等于1的函数),χ2(n)、...、χ10(n)是非主特征(对G中某个a,它们有性质f(a)≠1),特征之间是没有固定顺序的,某一特征χk(n)的分量χk(n=j)也没有固定的顺序,下面是一种遍历所有特征χk(n)的顺序:
特征乘法:把特征看成一个复向量,则两个复向量对应位置的复数相乘得到的复向量就是两个特征的乘积。
χ2(n)*χ2(n)=χ4(n)<=>PowerMod(2,2,11)=4
χ4(n)*χ2(n)=χ8(n)<=>PowerMod(2,3,11)=8
χ8(n)*χ2(n)=χ5(n)<=>PowerMod(2,4,11)=5
χ5(n)*χ2(n)=χ10(n)<=>PowerMod(2,5,11)=10
χ10(n)*χ2(n)=χ9(n)<=>PowerMod(2,6,11)=9
χ9(n)*χ2(n)=χ7(n)<=>PowerMod(2,7,11)=7
χ7(n)*χ2(n)=χ3(n)<=>PowerMod(2,8,11)=9
χ3(n)*χ2(n)=χ6(n)<=>PowerMod(2,9,11)=6
χ6(n)*χ2(n)=χ1(n)<=>PowerMod(2,10,11)=1
χ1(n)*χ2(n)=χ2(n)<=>PowerMod(2,11,11)=2=PowerMod(2,0,11)
χ2(n)^-1=χ6(n)<=>PowerMod(2,-1,11)=6
χ4(n)^-1=χ3(n)<=>PowerMod(4,-1,11)=3
χ8(n)^-1=χ7(n)<=>PowerMod(8,-1,11)=7
χ5(n)^-1=χ9(n)<=>PowerMod(5,-1,11)=9
χ10(n)^-1=χ10(n)<=>PowerMod(10,-1,11)=10
χ1(n)^-1=χ1(n)<=>PowerMod(1,-1,11)=1
G的特征的集合在特征的乘法下形成一个n阶Abel群^G。^G的恒等元是主特征f_1,f_i的逆元是1/f_i。
这里χ10(n)*χ10(n)=χ1(n),χ10(n)就是勒让德符号,称为模p=11的二次特征。
对于Abel群,特征标表所提供的关于群结构的信息是完全的(^G=G),但对于非Abel群则不是完全的。
利用原根与指数去构造模m=11的所有的狄利克雷特征。
gap> m:=11;;gi:=PrimitiveRootMod(m);;L:=[];;for n in [1..m-1] do Add(L,PowerMod(gi,n,m));od;List(L);Li:=[];;for n in [1..m-1] do Add(Li,Position(L,n)mod(m-1));od;List(Li);g:=E(m-1);;for j in [1..m-1] do Print("χ",j,"(n):");for nn in [0..m-2] do ni:=Position(L,nn&#

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值