数据结构与算法:一图弄懂维特比viterbi算法

本文详细介绍了维特比算法的用途,主要用于寻找自然语言处理中的最可能隐藏状态序列。通过《统计机器学习》中的例题,阐述了viterbi算法求最优路径的过程,并给出了算法的Python实现。
摘要由CSDN通过智能技术生成

一、viterbi算法的用途

在自然语言的工程实践中,viterbi算法常常被用来寻找最可能的隐藏状态序列。如,序列标注任务就需要用到viterbi算法。

二、viterbi求最优路径

李航老师《统计机器学习》有如下例题:
在这里插入图片描述
用viterbi算法解决上述例题的推理过程如下:
在这里插入图片描述

三、viterbi算法的实现

#!/usr/bin/python3
# -*- coding:utf-8 -*-

"""
@Author  : heyw
@Time    : 2020/1/30 16:22
@Software: PyCharm
@File    : viterbi.py
"""
import  numpy as np

def viterbi(invisible, transition_prob, emission_prob, pi, obs_seq):
    # 转换为numpy形式
    transition_prob=np.array(transition_prob)
    emission_prob=np.array(emission_prob)
    pi=np.array(pi)
    # 计算路径矩阵的行数和列数
    row_num = np.array(transition_prob).shape[0]
    col_num = len(obs_seq)
    # 定义路径矩
    path_matrix = np.zeros((row_num,col_num)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值