Bayesian(MAP)与Maximum Likelihood(MLE)的区别

本文深入浅出地介绍了MLE(极大似然估计)与MAP(最大后验估计)两种参数估计方法的基本概念及其数学表达形式。MLE是在已知概率分布的情况下,通过观测数据估计未知参数的一种方法;而MAP则进一步引入了先验概率的概念,使得估计结果更贴近实际情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我们得清楚MAP与MLE的概念是什么?

MAP:maximun a posteriori 最大后验估计

假设 θ θ 是能够最好解释数据集 D D 概率分布的参数。我们希望利用贝叶斯原理来估计参数θ
p(θ|D)=p(D|θ)p(θ)p(D) p ( θ | D ) = p ( D | θ ) ∗ p ( θ ) p ( D )
posterior=likelihoodpriorevidence p o s t e r i o r = l i k e l i h o o d ∗ p r i o r e v i d e n c e

MLE:Maximum Likelihood Estimate 极大似然估计

已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值