Untitled
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 166 Accepted Submission(s): 83
Problem Description
There is an integer
a
and
n
integers
b1,…,bn
. After selecting some numbers from
b1,…,bn
in any order, say
c1,…,cr
, we want to make sure that
a mod c1 mod c2 mod… mod cr=0
(i.e.,
a
will become the remainder divided by
ci
each time, and at the end, we want
a
to become
0
). Please determine the minimum value of
r
. If the goal cannot be achieved, print
−1
instead.
Input
The first line contains one integer
T≤5
, which represents the number of testcases.
For each testcase, there are two lines:
1. The first line contains two integers n and a ( 1≤n≤20,1≤a≤106 ).
2. The second line contains n integers b1,…,bn ( ∀1≤i≤n,1≤bi≤106 ).
For each testcase, there are two lines:
1. The first line contains two integers n and a ( 1≤n≤20,1≤a≤106 ).
2. The second line contains n integers b1,…,bn ( ∀1≤i≤n,1≤bi≤106 ).
Output
Print
T
answers in
T
lines.
Sample Input
2 2 9 2 7 2 9 6 7
Sample Output
2 -1
对于一组可能的答案c,如果先对一个觉小的ci取模,再对一个较大的cj取模,那么这个较大的cj肯定是没有用的。因此最终的答案序列中的c肯定是不增的。那么就枚举选哪些数字,并从大到小取模看看结果是否是0就可以了。时间复杂度O(2n).从小到大枚举,就可以了,。复杂度o(2^n)
#define N 205
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int T,n,a,pri[N],ans;
int Dfs(int x,int m,int num){
if(m == 0){
ans = min(ans,num);
return 0;
}
for(int i = x - 1;i>=0;i--){
if(m >= pri[i])
Dfs(i,m%pri[i],num+1);
}
}
int main()
{
while(S(T)!=EOF)
{
while(T--){
S2(n,a);
FI(n) S(pri[i]);
sort(pri,pri+n);
ans = INF;
Dfs(n,a,0);
if(ans == INF) ans = -1;
printf("%d\n",ans);
}
}
return 0;
}
Source
Recommend