映射(数学)的思考

Mapping(映射)

在数学里,映射是个术语(terminology),指两个非空集合之间的对应关系。需要注意的是,这种对应关系具有方向性。假设存在两个非空集合 A A A B B B,元素 a a a b b b 分别属于集合 A A A B B B。此时,有从 A A A B B B 的映射 f f f,记作 f f f: A→B。在映射作用下,有 f ( a ) = b f(a) = b f(a)=b a a a 被称为 b b b 关于映射 f f f 的原像, b b b 被称为 a a a 关于映射 f f f 的像。依据集合 A 与集合 B 之间的关系,可以将映射分为单射(injection)、满射(surjection)以及双射(bijection)(或一一映射)。值得注意的是,映射的基本要求有: ∀ a ∈ A \forall a \in A aA ∃ b ∈ B \exists b \in B bB 与之关于映射 f f f 对应。

*注意:映射有方向性。

Injection 单射

前提假设: ∀ a 1 , a 2 ∈ A \forall a_1, a_2 \in A a1,a2A,有 b 1 , b 2 ∈ B b_1, b_2 \in B b1,b2B,即 f ( a 1 ) = b 1 f(a_1) = b_1 f(a1)=b1 f ( a 2 ) = b 2 f(a_2) = b_2 f(a2)=b2
定义:满足若 a 1 ≠ a 2 a_1 \ne a_2 a1=a2,则 b 1 ≠ b 2 b_1 \ne b_2 b1=b2,那么我们称该映射为单射(injection)。

更形象地理解,在传统的恋爱观假设下,存在两个集合。集合 M M M 中的元素是所有男人,集合 W W W 中的元素是所有女人。当每个男人追求的女人都不一样时,被称作单射。需要注意的是,单射并没有要求所有的女人都在被男人追求;同时,为了满足映射的基本要求,每一个男人都有追求的对象。

Surjection 满射

定义: ∀ b ∈ B \forall b \in B bB,都 ∃ a ∈ A \exists a \in A aA f ( a ) = b f(a) = b f(a)=b,那么我们称该映射为满射(surjection)。此时,我们按照映射的反方向来看, ∀ b ∈ B \forall b \in B bB A A A 中都有元素与之对应。

在传统的恋爱观假设下,当每一个女人都有追求者时,被称作满射(surjection)。需要注意的是,满射并没有规定任意一个女人的追求者数量,即其任意一个女人的追求者数量可以大于1;同时,为了满足映射的基本要求,每一个男人都有追求的对象。

Bijection 双射(或一一映射)

定义:既是单射又是满射,那么我们称该映射为双射(surjection)。

在传统的恋爱观假设下,当每一个女人都有且仅有一个追求者时,被称作满射(surjection)。该定义既规定了所有的女人都有追求者,又限定了每个女人只能有一个追求者。其中隐含的信息便是集合 W W W 中的元素个数与集合 M M M 中的元素个数相等。

映射与集合中元素个数的思考

映射为双射:规定“男人”集合的人数与“女人”集合的人数相等。
映射为双射:“男人的人数” ≥ \ge “女人的人数”。
映射为单射:“男人的人数” ≤ \le “女人的人数”。

### 关于离散数学中的映射定理 在离散数学中,映射(函数)的概念及其性质是非常重要的基础之一。对于特定类型的映射定理,通常涉及的是如何通过已知条件来证明某些属性或结论。 #### 定义与预备知识 设 \(A\) 和 \(B\) 是两个集合,\(f : A \to B\) 表示从集合 \(A\) 到集合 \(B\) 的一个映射。如果存在这样的映射使得每一个属于 \(A\) 中的元素都恰好对应到 \(B\) 中唯一的一个元素,则称该映射为单射;若任意 \(b\in B\) 至少有一个 \(a\in A\) 使 \(f(a)=b\) 成立,则称为满射;当两者同时成立时即为双射[^1]。 #### 映射定理的具体形式及推导过程 考虑经典的鸽巢原理作为例子来进行说明: 假设 \(|A|=m, |B|=n (m>n)\),那么不存在任何从 \(A\) 到 \(B\) 的单射。这是因为如果有这样一个单射的话,意味着可以找到一种方式让 \(A\) 中不同的元素映射至 \(B\) 不同的位置而不重复,这显然违反了前提条件——因为 \(A\) 比 \(B\) 大,所以必然会有至少一对不同元素被映射到了同一个位置上[^2]。 为了更正式地表达上述逻辑并完成证明,可以通过反证法来进行论证: - 假设存在一个单射 \(f:A→B\); - 根据定义,这意味着所有的 \(a_i∈A(i=1,...,m)\) 对应着互不相同的 \(b_j=f(a_i) ∈B(j=1,...,n)\); - 然而由于 \(m>n\) ,这就造成了矛盾,因此最初的假设是错误的; - 结论:确实无法建立如此的单射关系。 这种基于基本概念和简单计数原则的方法展示了如何构建有效的数学证明,并且体现了离散数学里常见的思考模式。 ```python def is_possible_injection(A_size, B_size): """判断是否存在从A到B的单射""" return A_size <= B_size ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值