本文将结合实际项目经验,围绕 DAG 模型、多任务依赖、Flink/Spark 作业调度、生产级容错策略,以及 DolphinScheduler 与 Airflow 的选型差异等多个角度,深入探讨大数据调度系统的工程实践方法。
🧠 一、为什么需要专业的大数据调度系统?
在大数据项目中,常见的任务链条包括:
-
数据采集 → 清洗 → 加工 → 模型训练/分析 → 可视化
-
多任务依赖 & 任务优先级 & 失败重试策略
-
调度方式多样:定时调度 / 依赖触发 / 实时感知(如 Kafka 事件触发)
如果没有调度系统,开发者需手动管理脚本、监控执行状态,难以保障任务串联、容错机制、失败报警、状态持久化等基本能力。
🏗️ 二、核心概念:DAG 调度模型
调度系统的核心是 DAG(有向无环图):
-
节点:一个执行单元,如 Spark/Flink 程序、Shell 脚本、SQL 任务等
-
边:任