大数据任务调度实战:DolphinScheduler 与 Airflow 深度解析与最佳实践

本文将结合实际项目经验,围绕 DAG 模型、多任务依赖、Flink/Spark 作业调度、生产级容错策略,以及 DolphinScheduler 与 Airflow 的选型差异等多个角度,深入探讨大数据调度系统的工程实践方法。


🧠 一、为什么需要专业的大数据调度系统?

在大数据项目中,常见的任务链条包括:

  • 数据采集 → 清洗 → 加工 → 模型训练/分析 → 可视化

  • 多任务依赖 & 任务优先级 & 失败重试策略

  • 调度方式多样:定时调度 / 依赖触发 / 实时感知(如 Kafka 事件触发)

如果没有调度系统,开发者需手动管理脚本、监控执行状态,难以保障任务串联、容错机制、失败报警、状态持久化等基本能力。


🏗️ 二、核心概念:DAG 调度模型

调度系统的核心是 DAG(有向无环图)

  • 节点:一个执行单元,如 Spark/Flink 程序、Shell 脚本、SQL 任务等

  • :任

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值