GCD XOR 暴力

                                               GCD XOR


Given an integer N, nd how many pairs (A; B) are there such that: gcd(A; B) = A xor B where
1 B A N.
Here gcd(A; B) means the greatest common divisor of the numbers A and B. And A xor B is the
value of the bitwise xor operation on the binary representation of A and B.
Input

The rst line of the input contains an integer T (T 10000) denoting the number of test cases. The

following T lines contain an integer N (1 N 30000000).


Output
For each test case, print the case number rst in the format, `Case X:' (here, X is the serial of the
input) followed by a space and then the answer for that case. There is no new-line between cases.
Explanation

Sample 1: For N = 7, there are four valid pairs: (3, 2), (5, 4), (6, 4) and (7, 6).


Sample Input
2
7
20000000
Sample Output
Case 1: 4

Case 2: 34866117



暴力,用因子更新,则由欧拉常数可知时间为O(nlogn)

如果采用正序枚举A,B  那么时间是n^2,这是不行的,注意时间估计,调和级数和欧拉常数,自己看

我枚举了1000以内的所有对,发现B没有奇数,B到底能否为奇数,谁给证明下或举个反例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值