hdu 4365 tarjan强连通

http://acm.hdu.edu.cn/showproblem.php?pid=4635

题解摘自http://www.2cto.com/kf/201308/233219.html

最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部,所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点,令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了
故:1要用tarjan算法进行缩点
 2.缩点后重建图
 3.找出出度或入度为0且结点最小点,套用公式

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
using namespace std;
const int maxn = 100002;
vector<int> G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
//G是图,记录时间戳pre、lowlink能连接到的最早的祖先、时间戳dfs_clock,某个点属于的连通分量sccno,scc_cnt强连通分量数目
int in[maxn],out[maxn],num[maxn];
stack<int>S;
void dfs(int u)
{
    pre[u] = lowlink[u] = ++dfs_clock;
    S.push(u);
    for(int i = 0;i < G[u].size(); ++i){
        int v = G[u][i];
        if(!pre[v]){
            dfs(v);
            lowlink[u] = min(lowlink[u],lowlink[v]);
        }else if(!sccno[v]){
            lowlink[u] = min(lowlink[u],pre[v]);
        }
    }
    if(lowlink[u] == pre[u]){
        scc_cnt++;
        while(true){
            int x = S.top();S.pop();
            sccno[x] = scc_cnt;
            num[scc_cnt]++;
            if(x == u) break;
        }
    }
}
void find_scc(int n){

    dfs_clock = scc_cnt = 0;
    memset(sccno,0,sizeof(sccno));
    memset(pre,0,sizeof(pre));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
    memset(num,0,sizeof(num));
    for(int i = 1; i <= n; ++i)
        if(!pre[i]) dfs(i);
}
int main()
{
    int n,u,v,m;
    int  t,cnt = 0;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        for(int i = 1; i <= n ;++i) G[i].clear();
        for(int i=0; i < m; ++i) {
            scanf("%d%d", &u, &v);
            G[u].push_back(v);
        }
        find_scc(n);
        printf("Case %d: ",++cnt);
        if(scc_cnt == 1){puts("-1");continue;}
        for(int i = 1; i <= n; i++){
            for(int j = 0; j < G[i].size(); ++j){
                if(sccno[i]!=sccno[G[i][j]]){
                    in[sccno[G[i][j]]]++;
                    out[sccno[i]]++;
                }
            }
        }

        int minn = 0x3f3f3f3f,ans;
        for(int i = 1; i <= scc_cnt; ++i){
            if((!in[i] || !out[i])  && minn > num[i]) minn = num[i];
        }
        //cout<<"min"<<minn<<endl;
        ans = (minn - 1) * minn + (n - minn) * (n - minn - 1) + minn * (n - minn) - m;
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值