http://acm.hdu.edu.cn/showproblem.php?pid=4635
题解摘自http://www.2cto.com/kf/201308/233219.html
最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部,所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点,令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了
故:1要用tarjan算法进行缩点
2.缩点后重建图
3.找出出度或入度为0且结点最小点,套用公式
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
using namespace std;
const int maxn = 100002;
vector<int> G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
//G是图,记录时间戳pre、lowlink能连接到的最早的祖先、时间戳dfs_clock,某个点属于的连通分量sccno,scc_cnt强连通分量数目
int in[maxn],out[maxn],num[maxn];
stack<int>S;
void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = 0;i < G[u].size(); ++i){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u],lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u],pre[v]);
}
}
if(lowlink[u] == pre[u]){
scc_cnt++;
while(true){
int x = S.top();S.pop();
sccno[x] = scc_cnt;
num[scc_cnt]++;
if(x == u) break;
}
}
}
void find_scc(int n){
dfs_clock = scc_cnt = 0;
memset(sccno,0,sizeof(sccno));
memset(pre,0,sizeof(pre));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(num,0,sizeof(num));
for(int i = 1; i <= n; ++i)
if(!pre[i]) dfs(i);
}
int main()
{
int n,u,v,m;
int t,cnt = 0;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i = 1; i <= n ;++i) G[i].clear();
for(int i=0; i < m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
find_scc(n);
printf("Case %d: ",++cnt);
if(scc_cnt == 1){puts("-1");continue;}
for(int i = 1; i <= n; i++){
for(int j = 0; j < G[i].size(); ++j){
if(sccno[i]!=sccno[G[i][j]]){
in[sccno[G[i][j]]]++;
out[sccno[i]]++;
}
}
}
int minn = 0x3f3f3f3f,ans;
for(int i = 1; i <= scc_cnt; ++i){
if((!in[i] || !out[i]) && minn > num[i]) minn = num[i];
}
//cout<<"min"<<minn<<endl;
ans = (minn - 1) * minn + (n - minn) * (n - minn - 1) + minn * (n - minn) - m;
printf("%d\n",ans);
}
return 0;
}