变分法基础

1.变分的来源

最短下降问题
抛物线问题
问题:如图所示,我们要在A点到D点假设一个光滑轨道,要让一个小球从A点静止开始运动到D点所需的时间最短,这个轨道应该怎么设置,所需的时间又是多少?
fig1
假设小球运动到位置 ( x , y ) (x,y) (x,y),则,依据动能定理,有
m g y = 1 2 m v 2 mgy=\frac{1}{2}mv^2 mgy=21mv2
所以
v = 2 g y v=\sqrt{2gy} v=2gy
v = d s d t = d x 2 + d y 2 d t v=\frac{ds}{dt}=\frac{dx^2+dy^2}{dt} v=dtds=dtdx2+dy2
利用上式,对t积分,得到小球运动经历的时间为:
∫ d t = ∫ s d x 2 + d y 2 2 g y = ∫ s 1 + y ′ 2 g y d x \int dt = \int_s \frac{\sqrt{dx^2+dy^2}}{\sqrt{2gy}}=\int_s \frac{\sqrt{1+y'}}{\sqrt{2gy}}dx dt=s2gy dx2+dy2 =s2gy 1+y dx
要最小化这个时间,需要在y的函数空间求解,如何求解这个问题就引出了变分法

2.预备定理

定理:如果 ∀ h ( x ) , h ( a ) = h ( b ) = 0 \forall h(x),h(a)=h(b)=0 h(x),h(a)=h(b)=0 ∫ a b M ( x ) h ( x ) d x = 0 \int_a^b M(x)h(x)dx=0 abM(x)h(x)dx=0,则 在 ( a , b ) 上 , M ( x ) = 0 在(a,b)上,M(x)=0 (a,b)M(x)=0
证明:
(1)代数法:

h ( x ) = M ( x ) ( x − a ) ( b − x ) h(x) = M(x)(x-a)(b-x) h(x)=M(x)(xa)(bx),代入得到 M ( x ) h ( x ) = M ( x ) 2 ( x − a ) ( b − x ) M(x)h(x)=M(x)^2(x-a)(b-x) M(x)h(x)=M(x)2(xa)(bx)
由于在 ( a , b ) , ( x − a ) ( b − x ) > 0 (a,b),(x-a)(b-x)>0 (a,b),(xa)(bx)>0,可以得到 M ( x ) M(x) M(x)几乎处处为0。(并不能得到 M = 0 M=0 M=0,除非 M 连 续 M连续 M

(2)几何法:

δ \delta δ函数作为 h h h,可以知道 M ( x ) M(x) M(x)在任意点为0

推广到多维情形

  • 定理: ∀ η ( x ) , ξ ( x ) , η ( a ) = η ( b ) = ξ ( a ) = ξ ( b ) = 0 \forall \eta(x),\xi(x),\eta(a)=\eta(b)=\xi(a)=\xi(b)=0 η(x),ξ(x),η(a)=η(b)=ξ(a)=ξ(b)=0 ∫ a b M ( x ) η ( x ) + N ( x ) ξ ( x ) d x = 0 \int_a^b M(x)\eta(x) + N(x)\xi(x)dx=0 abM(x)η(x)+N(x)ξ(x)dx=0,则 在 ( a , b ) 上 , M ( x ) = N ( x ) = 0 在(a,b)上,M(x)=N(x)=0 (a,b)M(x)=N(x)=0
3.基本方法

对于一个函数 F F F,另一个距离它比较近的函数 F ˉ \bar{F} Fˉ,令 F ˉ = F + ϵ η \bar{F}=F+\epsilon \eta Fˉ=F+ϵη。利用这个替换,我们将函数的变动,替换成 ϵ \epsilon ϵ的变化和 η \eta η的改变

4.Euler方程推导

我们将我们求解的问题定义为,求一个 y ( x ) y(x) y(x)最小化积分 ∫ x 1 x 2 F ( x , y , y ′ ) d x \int_{x_1}^{x_2}F(x,y,y') dx x1x2F(x,y,y)dx
求解(我们要求的是,如果 y y y是最优解,那么应该满足什么条件),即局部最优解必要条件:
假设 y y y是局部最优解,用 y + ϵ η y + \epsilon \eta y+ϵη替换上面的 y y y,则积分变成 I ( ϵ ) = ∫ x 1 x 2 F ( x , y + ϵ η , y ′ + ϵ η ′ ) d x I(\epsilon) =\int_{x_1}^{x_2}F(x,y+\epsilon \eta,y'+\epsilon \eta') dx I(ϵ)=x1x2F(x,y+ϵη,y+ϵη)dx
显然,因为 y y y是局部最优解,有
d I ( ϵ ) d ϵ ∣ ϵ = 0 = 0 \frac{dI(\epsilon)}{d\epsilon}\bigg|_{\epsilon=0}=0 dϵdI(ϵ)ϵ=0=0
F ( x , u , v ) F(x,u,v) F(x,u,v)求偏导
∂ F ∂ ϵ = ∂ F ∂ x ∂ x ∂ ϵ + ∂ F ∂ u ∂ u ∂ ϵ + ∂ F ∂ v ∂ v ∂ ϵ = ∂ F ∂ u ∂ u ∂ ϵ + ∂ F ∂ v ∂ v ∂ ϵ = ∂ F ∂ u η + ∂ F ∂ v η ′ \frac{\partial F}{\partial \epsilon} = \frac{\partial F}{\partial x}\frac{\partial x}{\partial \epsilon} + \frac{\partial F}{\partial u}\frac{\partial u}{\partial \epsilon} + \frac{\partial F}{\partial v}\frac{\partial v}{\partial \epsilon}=\frac{\partial F}{\partial u}\frac{\partial u}{\partial \epsilon} + \frac{\partial F}{\partial v}\frac{\partial v}{\partial \epsilon}=\frac{\partial F}{\partial u}\eta + \frac{\partial F}{\partial v}\eta' ϵF=xFϵx+uFϵu+vFϵv=uFϵu+vFϵv=uFη+vFη
代入,得到
d I ( ϵ ) d ϵ ∣ ϵ = 0 = ∫ x 1 x 2 ∂ F ∂ u η + ∂ F ∂ v η ′ d x = ∫ x 1 x 2 ∂ F ∂ u η + ∂ F ∂ v d η d x d x = ∫ x 1 x 2 ∂ F ∂ u η d x + ∫ x 1 x 2 ∂ F ∂ v d η \frac{dI(\epsilon)}{d\epsilon}\bigg|_{\epsilon=0}=\int_{x_1}^{x_2}\frac{\partial F}{\partial u}\eta + \frac{\partial F}{\partial v}\eta'dx=\int_{x_1}^{x_2}\frac{\partial F}{\partial u}\eta + \frac{\partial F}{\partial v}\frac{d\eta}{dx}dx=\int_{x_1}^{x_2}\frac{\partial F}{\partial u}\eta dx + \int_{x_1}^{x_2}\frac{\partial F}{\partial v}d\eta dϵ

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值