CPU实时的开源TTS引擎,支持中英混语合成,本地部署实测

前面文章,和大家分享了很多免费开源的 TTS 项目:

就体验而言,笔者用的最多的当属:edge-tts FishSpeechCosyVoice

其中,edge-tts 需联网,而 FishSpeechCosyVoice 则需显卡。

有没有端侧可运行的轻量级 TTS 模型?

之前还真发现过一个潜力股:Kokoro,不过当时对中文不太友好,暂且搁置。

最近,Kokoro 上新了,新增 100 种中文音色,且支持中英混合。

这就有必要来聊聊了,希望能为您本地 TTS 选型提供一个参考。

1. Kokoro 简介

项目地址:https://github.com/hexgrad/kokoro

一款超轻量级的 TTS 模型,只有 82M 参数。

别看它架构轻巧,音质仍可媲美动辄 0.5B 的大模型。

且看语音合成领域的 TTS Arena 排行榜,荣登榜一,且遥遥领先!

相比 v0.19,v1.0 训练数据规模增加了,支持的音色更多:

老规矩,简短介绍下亮点:

  • 多语言支持:支持中、英、日、法、意大利、葡萄牙、西班牙、印地语共 8 种语言。
  • 多音色支持:提供了多种男女人物音色,不断更新中。
  • 实时语音生成:CPU上可近乎实时,而在GPU上,则达到了50倍实时速度。
  • 自然语音生成:不只是快,生成的语音还超逼真。

1.1 音色地址

Kokoro 的所有音色均以 pt 文件,存放在 huggingface,国内用户可通过以下地址下载:

v1.0:https://hf-mirror.com/hexgrad/Kokoro-82M

v1.1 https://hf-mirror.com/hexgrad/Kokoro-82M-v1.1-zh,新增更多中文音色。

2. Kokoro 实测

2.1 安装依赖

需安装如下依赖:

pip install kokoro
pip install ordered-set
pip install cn2an
pip install pypinyin_dict

2.2 模型和音色下载

从 huggingface 上拉取模型权重,以及音色文件:

export HF_ENDPOINT=https://hf-mirror.com # 引入镜像地址
huggingface-cli download --resume-download hexgrad/Kokoro-82M --local-dir ./ckpts/kokoro-v1.0
huggingface-cli download --resume-download hexgrad/Kokoro-82M-v1.1-zh --local-dir ./ckpts/kokoro-v1.1

2.3 模型推理

下面以中文语音合成为例,进行演示。

kokoro 模型推理,只需以下 4 步~

step 1:引入依赖

import torch
import time
from kokoro import KPipeline, KModel
import soundfile as sf

step 2:加载音色

尽管 kokoro 支持运行时下载音色,不过在 2.2 部分,我们已将音色文件下载到本地,这里直接 load 进来:

voice_zf = "zf_001"
voice_zf_tensor = torch.load(f'ckpts/kokoro-v1.1/voices/{voice_zf}.pt', weights_only=True)
voice_af = 'af_maple'
voice_af_tensor = torch.load(f'ckpts/kokoro-v1.1/voices/{voice_af}.pt', weights_only=True)

step 3:加载模型

repo_id = 'hexgrad/Kokoro-82M-v1.1-zh'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_path = 'ckpts/kokoro-v1.1/kokoro-v1_1-zh.pth'
config_path = 'ckpts/kokoro-v1.1/config.json'
model = KModel(model=model_path, config=config_path, repo_id=repo_id).to(device).eval()

step 4:开始推理

zh_pipeline = KPipeline(lang_code='z', repo_id=repo_id, model=model)
sentence = '如果您愿意帮助进一步完成这一使命,请考虑为此贡献许可的音频数据。'
start_time = time.time()
generator = zh_pipeline(sentence, voice=voice_zf_tensor, speed=speed_callable)
result = next(generator)
wav = result.audio
speech_len = len(wav) / 24000
print('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len)) 
sf.write('output.wav', wav, 24000)

其中,speed 支持 float 类型的语速控制,speed_callable为官方提供的默认回调函数(主要和训练数据有关):

def speed_callable(len_ps):
    speed = 0.8
    if len_ps <= 83:
        speed = 1
    elif len_ps < 183:
        speed = 1 - (len_ps - 83) / 500
    return speed * 1.1

对于中英混杂的文本,需要在 KPipeline 中增加 en_callable 回调函数,并传入英文音色,如下:

en_pipeline = KPipeline(lang_code='a', repo_id=repo_id, model=model)
def en_callable(text):
    if text == 'Kokoro':
        return 'kˈOkəɹO'
    elif text == 'Sol':
        return 'sˈOl'
    return next(en_pipeline(text, voice=voice_zf_tensor)).phonemes
zh_pipeline = KPipeline(lang_code='z', repo_id=repo_id, model=model, en_callable=en_callable)

最后,来听听合成效果:

中文语音合成:

如果您愿意帮助进一步完成这一使命,请考虑为此贡献许可的音频数据。

kokoro-zh.wav

中英混语合成:

该 Apache 许可模式也符合 OpenAI 所宣称的广泛传播 AI 优势的使命。

kokoro-mixed.wav

2.4 速度测试

GPU 推理显存占用:

TTS 通用的速度评估指标为 rtf,也即 推理耗时/生成音频耗时,指标越低,代表推理速度越快!

kokoro GPU 推理:

yield speech len 6.825, rtf 0.2680429521497789

kokoro CPU 推理:

yield speech len 6.825, rtf 0.4242438012427026

可以发现,即便是 CPU 推理,rtf 依然远小于 1,强啊!

2.5 服务端部署

下面我们采用 FastAPI 完成服务部署。(完整代码,可在文末自取)

首先,定义数据模型,用于接收POST请求中的数据:

class TTSRequest(BaseModel):
    tts_text: str                       # 待合成的文本
    voice_id: Optional[str] = "zf_001"      # 参考语音的id
    speed: Optional[float] = None       # 语速

接口功能函数:

@app.post('/tts')
def tts(request: TTSRequest):
    voice_path = f'ckpts/kokoro-v1.1/voices/{request.voice_id}.pt'
    if not os.path.exists(voice_path):
        return JSONResponse(status_code=400, content={"error": "voice_id not found"})
    voice_tensor = torch.load(voice_path, weights_only=True)
    speed = speed_callable if request.speed is None else request.speed
    generator = zh_pipeline(request.tts_text, voice=voice_tensor, speed=speed)
    result = next(generator)
    wav = result.audio.cpu().numpy()
    wav = (wav * 32767).astype(np.int16)
    wav_bytes = io.BytesIO()
    wav_bytes.write(wav.tobytes())
    wav_bytes.seek(0)
    return StreamingResponse(wav_bytes, media_type='audio/pcm', headers=headers)

注意:模型原始输出为 torch.tensor,可转成 int16 以 pcm 格式输出。

最后,启动服务:

nohup uvicorn server:app --host 0.0.0.0 --port 3008 > server.log 2>&1 &
echo "Server started"

客户端测试代码:

def test():
    data = {
        'tts_text': '2024年12月21日,你好,欢迎使用语音合成服务,共收录2000余种语言。',
    }
    response = requests.post(f"{url}/tts", json=data)
    pcm2wav(response.content)

对于数字播报这一老大难问题,kokoro 也能轻松拿捏,来听效果:

kokoro-num.wav

就凭这,kokoro 吊打一众 TTS 巨无霸模型!

写在最后

本文分享了轻量级语音合成工具:kokoro,并进行了本地部署实测。

有一说一,抛开语气 情绪等细粒度控制不谈,kokoro 绝对的性价比之王!

对中文支持友好,CPU 实时可跑,单凭这两点,强烈推荐您一试!

如果对你有帮助,欢迎点赞收藏备用。

本文服务部署代码已上传云盘,需要的朋友,公众号后台回复kokoro自取!


为方便大家交流,新建了一个 AI 交流群,公众号后台「联系我」,拉你进群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值