hdu 4563 御剑术I(DP)

御剑术I

Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 182    Accepted Submission(s): 30


Problem Description
在众多武侠类游戏中,都可以看到主角衣袂飘飘地在一旁通过“气”操控剑在空中飞行来杀伤敌人的帅气场景。

“十年磨一剑,霜刃未曾试”,在刻苦练习了不知道多少个日夜之后,今天你也掌握了这一项高超的武艺。虽然你可以并行地控制多柄剑同时飞行,但为了照顾普通群众的理解需求,暂时只考虑一把剑的情形。

所谓御剑术,实质上就是通过“气”来传递信息给已经通灵的剑,在这里,我们定义为瞬间给予剑一个设定好的速度。为了简化问题,将剑看作一个大小可以忽略的点,飞行在一个“二次元”——二维世界里,假设起点为原点(0,0)。需要注意的是,在这个世界中,剑依然会受到竖直向下的大小为g=9.8的重力加速度的影响。

现在由你来控制这个点,哦不,是剑,你已经掌握了N个命令,每个命令会瞬间清除剑的所有速度,然后给它一个固定的向量速度(V_xi, V_yi),分别表示水平速度与竖直速度,每个命令最多可发出一次。你的任务是,控制剑完成水平方向上长度为L的飞行,并使其完成飞行时的高度尽可能高,也就是,Y坐标值尽可能大。

由于你对“气”掌握的并不够熟练,所以只能在整数时刻时发出命令,可以认为这里的所有速度与加速度都转化为标准值(比如,米和秒),你只能在T=0,1,… 这种时刻下达指令。你希望知道横向飞行距离固定时最高的飞行高度。
 

Input
输入第一行为T,表示有T组测试数据。
每组数据以两个整数N,L开始,含义与描述对应。接下来的N行中,每行有两个整数,V_xi与V_yi。

[Technical Specification]

1. 1 <= T <= 77
2. 1 <= N <= 100
3. 1 <= L <= 100
4. 1 <= V_xi <=100
5. -100 <= V_yi <= 100
 

Output
对每组数据,先输出为第几组数据,然后输出最高飞行高度,四舍五入到小数点后三位。
 

Sample Input
  
  
3 1 1 10 10 2 10 10 10 10 20 3 30 10 10 10 15 10 20
 

Sample Output
  
  
Case 1: 0.951 Case 2: 15.100 Case 3: 30.500
Hint
如果御剑熟练一些,不需要在整数点发出命令,样例2的结果可以更大。但是这里,只能选择在T=0时发出命令(10,20),然后等待飞行完成。 注意,测试数据大部分都是纯随机生成的。
 

Source
 

Recommend
liuyiding

题解:该题可以当类01背包做,长度l为容量,v_xi为每个物品的重量,v_yi为每个物品的价值。又题目可知,除了最后一次选择的速度,其他速度必定行了整数秒,则枚举所有速度为最后选择的速度,进行dp即可

#include<stdio.h>
#include<string.h>
#define INF 0xffffff
struct point{ int x,y; }p[105];
int n,l;
double dp[105];
double MAX(double a,double b)
{
    if(a>b) return a;
    return b;
}
double DP(int z)
{
    int i,j,k;
    double res=-INF,t;

    for(i=1;i<105;i++) dp[i]=-INF;
    for(dp[0]=i=0;i<n;i++)
    {
        if(i==z) continue;//由于z为最后速度,之前不能选
        for(j=l;j>=0;j--)
        {
            for(k=0;k<=j/p[i].x;k++)
            {
                if(j-p[i].x*k<0||dp[j-p[i].x*k]==-1) continue;
                dp[j]=MAX(dp[j],dp[j-p[i].x*k]+p[i].y*k-4.9*k*k);
            }
        }
    }
    for(i=0;i<=l;i++)
    {
        if(dp[i]==-INF) continue; //若dp[i]==-INF则没有组合能到达这个点
        t=(l-i)*1.0/p[z].x;
        res=MAX(res,dp[i]+p[z].y*t-4.9*t*t);
    }
    return res;
}
int main()
{
    int t,i,j;
    double h;

    scanf("%d",&t);
    for(i=1;i<=t;i++)
    {
        scanf("%d%d",&n,&l);
        for(j=0;j<n;j++)
            scanf("%d%d",&p[j].x,&p[j].y);
        for(h=-INF,j=0;j<n;j++)
            h=MAX(h,DP(j));
        printf("Case %d: %.3lf\n",i,h);
    }
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值