pku 1222 EXTENDED LIGHTS OUT(构造矩阵+高斯消元)

EXTENDED LIGHTS OUT
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 5524 Accepted: 3647

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source


题意:这是一个开灯游戏,给定一个5*6的01矩阵,0代表关了灯,1代表开了灯,每点一格,这一格和上下左右的格子的开关状态都会反转,显然这个游戏和点格子的顺序无关,所以每个格子最多只需点一次,输出点了的格子的01矩阵,1代表点了,0反之
题解:将其状态转移看成和一个5*6的矩阵相加,然后一个格子有一个矩阵变元,将每一个5*6的矩阵看成列矩阵,30个变元,列出30个方程,用高斯消元即可求解

#include<stdio.h>
#include<string.h>
int a[33][33];
void gauss()
{
    int i,j,k,t;

    for(i=0;i<30;i++)
    {
        for(k=i;k<30;k++) if(a[k][i]!=0) break;
        for(j=0;j<=30;j++) t=a[i][j],a[i][j]=a[k][j],a[k][j]=t;
        for(j=0;j<30;j++)
        {
            if(i!=j&&a[j][i])
            {
                for(k=0;k<=30;k++)
                    a[j][k]^=a[i][k];
            }
        }
    }
}
int main()
{
    int cas=1,t,i;

    scanf("%d",&t);
    while(t--)
    {
        memset(a,0,sizeof(a));
        for(i=0;i<30;i++) scanf("%d",&a[i][30]);
        for(i=0;i<30;i++)
        {
            a[i][i]=1;
            if(i-6>=0) a[i][i-6]=1;
            if(i%6!=0) a[i][i-1]=1;
            if((i+1)%6!=0) a[i][i+1]=1;
            if(i+6<30) a[i][i+6]=1;
        }
        gauss();
        printf("PUZZLE #%d\n",cas++);
        for(i=0;i<30;i++)
        {
            printf("%d",a[i][30]);
            if(i%6==5) printf("\n");
            else printf(" ");
        }
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值