【技巧】wsl 安装 pyenv 运行环境

回到目录

标题:【技巧】wsl 安装 pyenv 运行环境

参考:https://github.com/pyenv/pyenv

1.1.自动安装 (需要科学上网)

$ curl -fsSL https://pyenv.run | bash

1.2. 或者 手动安装

1.2.1. 拉源代码

$ git clone https://github.com/pyenv/pyenv.git ~/.pyenv

1.2.2.配置和验证 pyenv

1.2.2.1. 增加配置到 ~/.profile:

$ echo ‘export PYENV_ROOT=“$HOME/.pyenv”’ >> ~/.profile
$ echo ‘[[ -d KaTeX parse error: Expected 'EOF', got '&' at position 19: …NV_ROOT/bin ]] &̲& export PATH="PYENV_ROOT/bin:$PATH"’ >> ~/.profile
$ echo ‘eval “$(pyenv init - bash)”’ >> ~/.profile

1.2.2.2. 增加配置到 ~/.bash_profile:

$ echo ‘export PYENV_ROOT=“$HOME/.pyenv”’ >> ~/.bash_profile
$ echo ‘[[ -d KaTeX parse error: Expected 'EOF', got '&' at position 19: …NV_ROOT/bin ]] &̲& export PATH="PYENV_ROOT/bin:$PATH"’ >> ~/.bash_profile
$ echo ‘eval “$(pyenv init - bash)”’ >> ~/.bash_profile

1.2.2.3. 执行 .profile

这一步与官网不太一样,wsl在.profile的处理上可能与原生的ubuntu有差异
$ source .profile

1.2. 验证安装成功

$ pyenv --version
pyenv 2.5.7

1.3. 安装pyenv依赖工具

$ sudo apt update; sudo apt install build-essential libssl-dev zlib1g-dev
libbz2-dev libreadline-dev libsqlite3-dev curl git
libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev

1.4. 下载、安装、切换特定版本python

1.4.1. 配置国内镜像源

$ export PYTHON_BUILD_MIRROR_URL=“https://mirrors.tuna.tsinghua.edu.cn/pyenv/”

1.4.2. 在线安装3.12版本python

这个很慢,推荐使用1.4.3的离线安装方法
$ pyenv install 3.12

1.4.3. 或者 离线安装

1.4.3.1. 互联网机器下载安装包

https://www.python.org/ftp/python/3.12.10/Python-3.12.10.tar.xz

1.4.3.2. 手动安装python包

参考:https://www.cnblogs.com/yinchaows/p/18791400
$ mkdir ~/.pyenv/cache
$ mv ./Python-3.12.10.tar.xz .pyenv/cache/
$ pyenv install -v 3.12.10

1.4.3.3. 确认正常安装

$ ls ~/.pyenv/versions
3.12.10

1.4.3.4. 切换3.12版本python

$ pyenv global 3.12
$ python --version
Python 3.12.10

到这里pyenv安装步骤完成

回到目录

### 回答1: 要在WSL安装深度学习环境,可以按照以下步骤进行操作。 1. 首先,确保已经安装WSL并选择了适合您的Linux发行版,如Ubuntu。 2. 打开WSL终端并运行以下命令,更新系统软件包列表: ``` sudo apt update ``` 3. 安装必要的依赖项,包括Python和pip: ``` sudo apt install python3 python3-pip ``` 4. 安装所需的深度学习库,如TensorFlow或PyTorch。可以使用pip命令来安装它们,例如: ``` pip3 install tensorflow ``` 5. 根据需要,您还可以安装其他深度学习库和工具,如Keras、Scikit-learn等: ``` pip3 install keras scikit-learn ``` 6. 可能需要安装GPU的相关驱动程序和CUDA工具包,以便在WSL中进行GPU加速的深度学习任务。这可能需要更多的配置和步骤,因为WSL并不原生支持CUDA,但是可以通过一些额外的工具和补丁来实现。 请注意,WSL在很大程度上是用于开发目的,而不是用于性能要求较高的深度学习任务。如果您需要更高性能的环境,建议直接在宿主系统上安装深度学习环境,而不是使用WSL。 希望以上步骤对于在WSL安装深度学习环境有所帮助。 ### 回答2: 要在WSL安装深度学习环境,首先需要安装WSL,并选择适合的发行版,如Ubuntu。安装完成后,可以使用WSL的命令行界面进行操作。 在WSL安装深度学习环境一般分为以下步骤: 1. 更新系统:使用命令sudo apt update && sudo apt upgrade来更新WSL的系统软件和库。 2. 安装必要的工具:安装一些必要的工具和软件包,如wget、curl等,以便后续的操作。 3. 安装Python:深度学习环境通常需要使用Python作为编程语言,可以通过sudo apt install python安装Python。 4. 安装pip:Pip是一个Python的包管理工具,使用命令sudo apt install python3-pip来安装pip。 5. 安装深度学习框架:有多种深度学习框架可供选择,如TensorFlow、PyTorch等。可以使用pip安装这些框架,例如使用pip install tensorflow来安装TensorFlow。 6. 安装GPU支持(可选):如果使用GPU进行深度学习训练,还需要安装相应的GPU驱动和CUDA库。具体安装步骤可以参考相应的GPU厂商文档。 7. 安装其他依赖库:深度学习环境通常还依赖于其他的库和软件包,可以使用pip安装这些依赖库。 安装深度学习环境可能会涉及到很多细节和配置,具体操作要根据具体环境和需求来确定。此外,还可以通过WSL启动一个图形界面,以方便使用深度学习工具和编辑器。在图形界面中,可以更方便地进行代码编写、调试和可视化等操作。 总之,在WSL安装深度学习环境需要经过一系列的准备和安装步骤,可以根据具体需求和环境按照以上步骤进行操作。 ### 回答3: 要在WSL安装深度学习环境,可以按照以下步骤进行操作: 1. 安装WSL:在Windows系统上,可以通过Microsoft Store或者官方网站下载安装WSL。选择合适的Linux发行版,如Ubuntu。 2. 启动WSL安装完成后,可以在Windows菜单中找到WSL并打开命令行终端。 3. 更新系统:在WSL终端中,使用以下命令更新系统软件包和依赖项: ``` sudo apt update sudo apt upgrade ``` 4. 安装Python和pip:为了使用深度学习框架,需要先安装Python和pip。在WSL中使用以下命令进行安装: ``` sudo apt install python3 python3-pip ``` 5. 安装深度学习库:根据需要选择深度学习框架(如TensorFlow、PyTorch等),并使用pip命令安装相应的库。例如,安装TensorFlow和Keras可以使用以下命令: ``` pip3 install tensorflow pip3 install keras ``` 6. 安装GPU驱动(可选):如果你的系统有NVIDIA GPU并且想要使用GPU加速深度学习训练,可以在WSL安装相应的GPU驱动和CUDA工具包。具体安装过程较为复杂,建议参考相关文档或教程进行操作。 以上步骤是在WSL安装深度学习环境的大致流程。根据不同的需求和情况,可能会有一些额外的步骤或配置,建议参考相关文档或教程进行更详细的指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值