B+树

概念

B+树,是B树的一种变形树。

特性

一棵m阶的B+树与m阶的B树的差异在于:

  • 若某节点有n个孩子,则该结点包含的关键字个数为n; (对于B树,节点包含的关键字个数为:n-1)
  • B+树的数据(关键字及指向关键字记录的指针)都存储在叶子结点中,分支结点均为索引(其子树根结点中最大/最小关键字),且叶子结点是按关键字自小而大的顺序链接。 (对于B树,分支结点和叶子结点都存储数据)

    所以一个B+树通常有两个头指针,一个是指向根节点的root,另一个是指向叶子结点顺序链表的第一个(最小)关键字。

  • 若key[i]为存储在分支结点中的关键字,child[i]为该结点的子结点,则

    1. 若分支结点中的关键字为其子树根节点中的最小值:
      key[0] ≤ child[0] < key[1] ≤ child[1] < key [2] < … < key[n-1] ≤ child[n-1]
    2. 若分支结点中的关键字为其子树根节点中的最大值:
      child[0] ≤ key[0]< child[1] ≤ key[1] < child [2] < … < child[n-1] ≤ key[n-1]

为什么说B+树比B树更适用于文件系统和数据库?

  • B+树的磁盘IO次数更低
    相较于B树,B+树的非终端结点并没有指向关键字对应文件内容的指针。因此单个节点可容纳的关键字数目越多,从而降低了磁盘IO次数。
  • B+树的查询效率更稳定
    由于分支结点只是作为索引,并不指向文件内容,所以查找任何关键字时,都必须从根结点遍历到叶子结点,即所有关键字查询的路径长度相同,从而导致每一个数据的查询效率相当。(对于B树,关键字越靠近根节点的,查找时间越快。)

查找操作

B+树查找包括两种方法:

  • 从叶子结点顺序链表的头指针开始,顺序查找;
  • 从根结点开始,在查找时,若分支结点上的某关键字等于给定值,并不终止,而是继续向下遍历直至叶子结点。

因此,B树只适合随机检索,B+树同时支持随机和顺序检索。

插入操作

B+树的插入与B树的插入类似:若插入后,结点中的关键字个数超过最大值,则必须分裂该结点。不同的是:

  • B+树的插入仅在叶子结点进行;
  • 若插入后,结点中的关键字个数 <= 最大值,但插入的关键字为该结点中的最大/最小值,则自底向上,直到根节点,判断结点是否包含该叶子结点原来的索引关键字,若有,则替换为新索引关键字。
  • 分裂后的2个结点的父结点必须包含这两个结点的最大/最小关键字。

删除操作

B+树的删除与B树的删除类似:若删除后,结点中的关键字个数小于最小值,则必须向相邻兄弟借一个关键字或与相邻兄弟合并为一个结点。不同的是:

  • B+树的删除仅在叶子结点进行;
  • 若插入后,结点中的关键字个数 >= 最小值,但删除的为该结点中的最大/最小关键字,则必须将(删除后)结点中的最大/最小关键字作为新的索引。(自底向上,直到根节点,替换原先的索引值)
  • 合并后,新结点中的最大/最小关键字替换原先的两个索引值。(自底向上,直到根节点,替换原先的索引值)
### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值