训练一个千亿大模型需要多少钱

训练一个千亿参数规模的大型模型的成本是相当高昂的,并且会受到多种因素的影响,包括但不限于使用的硬件、训练时间、数据集的大小、训练轮次、批次大小等。根据一些行业报告和分析,我们可以得出以下估算:

根据一篇行业分析文章52,训练一个千亿规模的大型模型,如果假设使用英伟达A100 GPU,并在10天内完成训练,总成本可能在1亿4300万美元左右。

另一份来自斯坦福 HAI 研究所的年度 AI Index 报告58指出,2023 年,OpenAI 的 GPT-4 和 Google 的 Gemini Ultra 的训练成本分别约为 7800 万美元和 1.91 亿美元。虽然这些模型的具体参数规模未明确说明是否达到千亿,但它们属于前沿的大型模型,可以为千亿参数模型的成本提供一个参考范围。

此外,还有分析预测,随着模型规模的扩大,训练成本将指数级增长,未来训练最新大语言模型的成本可能达到50亿至100亿美元56。

需要注意的是,这些数字可能会因具体情况和假设条件的不同而有所变化。实际成本还会受到硬件成本、电力消耗、数据中心运维成本、人力成本等其他因素的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大连赵哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值