大模型的训练时间

大模型的训练时间因多种因素而异,以下是一些具体的例子和估算方法:

具体案例

  • GPT-3:GPT-3拥有1750亿参数,在3000亿个token的数据集上训练,使用1024张40GB显存的A100 GPU,A100的峰值性能为312TFlops,设GPU利用率为0.45,训练时间约为34天。

  • LLaMA 3.1:LLaMA 3.1拥有4050亿参数,在15.6万亿token数据集上训练,使用16000个H100 GPU,每个H100 GPU每小时的费用是2美元,训练总成本约为46848000美元,训练时间约为61天。

估算方法

  1. 计算总计算量

    • 不开激活重计算:每个token的总计算量为

      6 \times \text{模型参数量}

      6×模型参数量

      次浮点运算。
    • 开激活重计算:每个token的总计算量为

      8 \times \text{模型参数量}

      8×模型参数量

      次浮点运算。
  2. 估算训练时间

    • 训练时间(秒)=

      \frac{\text{总计算量}}{\text{GPU数量} \times \text{每个GPU的峰值FLOPS} \times \text{GPU利用率}}

      总计算量GPU数量×每个GPU的峰值FLOPS×GPU利用率

    • 例如,对于GPT-3-175B模型,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值