大模型的训练时间因多种因素而异,以下是一些具体的例子和估算方法:
具体案例
-
GPT-3:GPT-3拥有1750亿参数,在3000亿个token的数据集上训练,使用1024张40GB显存的A100 GPU,A100的峰值性能为312TFlops,设GPU利用率为0.45,训练时间约为34天。
-
LLaMA 3.1:LLaMA 3.1拥有4050亿参数,在15.6万亿token数据集上训练,使用16000个H100 GPU,每个H100 GPU每小时的费用是2美元,训练总成本约为46848000美元,训练时间约为61天。
估算方法
-
计算总计算量:
- 不开激活重计算:每个token的总计算量为
6 \times \text{模型参数量}
6×模型参数量
次浮点运算。 - 开激活重计算:每个token的总计算量为
8 \times \text{模型参数量}
8×模型参数量
次浮点运算。
- 不开激活重计算:每个token的总计算量为
-
估算训练时间:
- 训练时间(秒)=
\frac{\text{总计算量}}{\text{GPU数量} \times \text{每个GPU的峰值FLOPS} \times \text{GPU利用率}}
总计算量GPU数量×每个GPU的峰值FLOPS×GPU利用率
-
例如,对于GPT-3-175B模型,在
- 训练时间(秒)=