经典数据分析方法——移动平均法在时序数据分析中的应用分析

移动平均法

移动平均法是指上是对变量值进行平均的方法而已,即对原时间序列数据进行修正,从而消除季节变动和个别不规则变动对整体数据的影响。根据时序数据的特性不同移动平均法可分为三类:

简单移动平均

直接上例子

 移动项数k即为从第一项开始k每隔k项相加,然后相加所得的值除以k就得到了新的时间序列,22=5+7+10得到三项移动的平均值为7.33。有以上例子可以看出,简单的移动平均可以消除个别例外数值对整个数据的趋势。该移动平均方法首先要确定移动项数k,其实k值越大修匀效果越好,但是对于数据量比较少的时候应该权衡k值与数据总个数之间合理性。

如果某个数据具有周期性的变化,应该以周期长度作为移动项数,例如季度数据就应该以4为移动项数,以消除不同季度对整体数据的影响,若为星期数据,就应该以7为移动项数。另外为了数据的连续性和完整性,k的选取也有讲究,若原数据总项数为奇数,那么k也应该取奇数,偶数亦然。这样可以保证所形成的的新的平均数据序列每条数据都是k项相加求平均而来。当然若不按照以上方法确定k也不会对数据整体走势有很大的影响,只是在新数列的首尾两项会存在不合理的现象,数据足够多的情况下可以直接删除首位两项。

简单的移动平均法一般只是使用与具有直线走势的时间数列。

加权移动平均法

该中移动平均方法可以理解为在简单移动平均方法基础之上于k项求和时做一个加权求和的操作。

图中49=5+7*2+10*3,原数列乘以权重后得到三项移动的总和值,再取平均即为8.17。

那么为什么要这么做呢?原因是,在很多情况下,当前数值 x 受 x_{t} 的影响要大于x_{t-1},x_{t-2}, 而 x_{t-1} 又要大于x_{t-2},所以就形成了以上权值相加的局面。权值大小的定义需要根据应用场景的不同做调整,但是只要涉及到因为时序数据先后关系影响到当前时序数据值时应该考虑到用加权移动平均的方法。如果你只知道权值在近期数据要大一些,远期数据要小一些,并不知道这权值到底如何进行分配,那么请看一下的指数平滑法。

指数平滑法

指数平滑法是加权移动平均法的一种特殊情形。只选择一个权数,即最近时期观测值得权数,其它时期数据值的权数可以自动推算出来,观测值离预测时期越远,它的权数就越小。模型如下:

现有三个时期的数据y1,y2,y3,来说明任意时期的指数平滑法的预测值。同样也是时间数列以前所有时期值得加权平均数。

 个人觉得该种方法必须牢记一点\widehat{Y}_{i+1}=\alpha Y_i+(1-\alpha )\widehat{Y}_i,即当前项的预测值为前一时刻实际值乘以平滑系数,然后加上前一个时刻的预测值乘以阻尼系数。上面我们看到对 \widehat{Y}_4 预测期望值的所有参数之和为1,即\alpha +\alpha (1-\alpha )+(1-\alpha )^2=1

以下是查阅资料后平滑系数取值与整体数据变化趋势之间大致的一个对应关系,仅供参考。

1、当时间序列呈现较稳定的水平趋势时,应选较小的α值,一般可在0.05~0.20之间取值;

2、当时间序列有波动,但长期趋势变化不大时,可选稍大的α值,常在0.1~0.4之间取值;

3、当时间序列波动很大,长期趋势变化幅度较大,呈现明显且迅速的上升或下降趋势时,宜选择较大的α值,如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速跟上数据的变化;

4、当是上升(或下降)的发展趋势类型,α应取较大的值,在0.6~1之间。

综上所述,移动平均法比较适用于具有长期趋势数据的分析。所以当遇到长期的、具有周期性或者不规律的数据走向时可以考虑采用移动平均法。

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页