ocsort 和 Bytetrack 对 dance 数据集进行官网评估

本文主要补充了dance的官网提交过程,主要在3.2小节~
全文参考了以下文章

ocsort安装 OC-SORT:基于PyTorch的视频多目标追踪教程-CSDN博客

dance数据集下载 https://zhuanlan.zhihu.com/p/678765740

dance官网:https://github.com/DanceTrack/DanceTrack.git

Byte多目标跟踪中使用trackeval评估dancetrack运行结果_dancetrack评估提交-CSDN博客

目录

一、 OC-SORT安装

二、 Dance数据集准备

三、 OC-SORT评估Dance

3.1、 val验证集评估

 3.2、 test测试集评估

四、 ByteTrack评估Dance



一、 OC-SORT安装

# 安装 github:https://github.com/noahcao/OC_SORT
参考:https://blog.csdn.net/weixin_44283270/article/details/132804342

conda create -n ocsort python=3.8
conda activate ocsort

#根据cuda版本安装torch
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
cd ocsort 
pip install -r requirements.txt
python setup.py develop
pip install cython
pip install pycocotools
pip install cython_bbox pandas xmltodict

# -----------------------------------
# 安装成功,若有MOT17数据集,可进行测试
# ocsort_x_mot17.pth.tar下载:
# https://drive.google.com/drive/folders/1LnhZVJlpufUnWuObZASIN1KwfhuvT_a8

# 测试 MOT17
python tools/run_ocsort.py -f exps/example/mot/yolox_x_mix_det.py -c pretrained/ocsort_x_mot17.pth.tar -b 1 -d 1 --fp16 --fuse --expn oc_yolox_mot17
# -----------------------------------

# Dance数据集下载见下章
# Dance val
python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_val.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --expn dance-val
# Dance test
python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_test.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --test --expn dance-test

二、 Dance数据集准备

# 1、安装DanceTrack项目:
git地址下载:https://github.com/DanceTrack/DanceTrack.git
# 2、下载dancetrack数据集和权重 百度网盘https://pan.baidu.com/share/init?surl=9O3IvYNzzrcLqlODHKYUwA  请输入提取码 (code:awew) 
# 权重路径 bytetrack_models/bytetrack_model.pth.tar
# 3、修改DanceTrack-main/tools/convert_dance_to_coco.py 
DATA_PATH = 'dancetrack'
OUT_PATH = os.path.join(DATA_PATH, 'annotations')    
SPLITS = ['train', 'val', 'test']
# 4、运行命令生成coco的annotations文件
python tools/convert_dance_to_coco.py 

#得到数据集结构如下图

三、 OC-SORT评估Dance

3.1、 val验证集评估

# 将dancetrack数据集放入对应项目路径下:oc-sort/datasets

# Dancetrack val
python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_val.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --expn dance-val

val结果可以在本地进行评估

 3.2、 test测试集评估

# Dancetrack test
python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_test.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --test --expn dance-test

test测试集评估需要上传官网

A、首先将YOLO_outputs/dance-test内容下载打包为tracker文件,等待上传;

【说明:注意将所有txt文件存入tracker文件夹内,对tracker文件夹进行打包,且文件夹名称必须问tracker这里和MOT17官网不同,MOT17是直接对所有txt压缩打包,这里是对文件夹进行压缩打包

B、注册 CodaLab - Sign In  1min搞定中间需要邮箱验证一下即可;

C、注册成功后,进入到DanceTrack这个比赛,进行提交,按提交按钮时弹出上传界面

CodaLab主页找到比赛
填写提交内容
提交成功
提交后等约5min中状态由running到Finished标题
可以下载View scoring output log看详细精度

D、可以看到最后的精度和论文一致;

四、 ByteTrack评估Dance

需要在DanceTrack-main项目下放入ByteTrack项目;

1、首先参照第二章,如果已经有DanceTrack项目和dancetrack数据集则忽略以下内容;

# DanceTrack项目和数据集准备

# 1、安装DanceTrack项目:
git地址下载:https://github.com/DanceTrack/DanceTrack.git
# 2、下载dancetrack数据集和权重 百度网盘https://pan.baidu.com/share/init?surl=9O3IvYNzzrcLqlODHKYUwA  请输入提取码 (code:awew) 
# 权重路径 bytetrack_models/bytetrack_model.pth.tar
# 3、修改DanceTrack-main/tools/convert_dance_to_coco.py 
DATA_PATH = 'dancetrack'
OUT_PATH = os.path.join(DATA_PATH, 'annotations')    
SPLITS = ['train', 'val', 'test']
# 4、运行命令生成coco的annotations文件
python tools/convert_dance_to_coco.py 

2、将DanceTrack-main/Bytetrack中的内容替换到Bytetrack项目相应地方,再将Bytetrack整个内容放入DanceTrack-main/Bytetrack中就可以进行评估测试;

3、测试和评估

# 根目录 DanceTrack
cd ByteTrack
# val
python tools/track.py -f exps/example/dancetrack/yolox_x.py -c Pretrain、bytetrack_model.pth.tar -b 1 -d 1 --fp16 --fuse
# 评估
# 将ByteTrack/YOLOX_outputs/yolox_x/tracker_results 内容放入val/TRACKER_NAME
cd ..
python TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL val  --METRICS HOTA CLEAR Identity  --GT_FOLDER dancetrack/val --SEQMAP_FILE dancetrack/val_seqmap.txt --SKIP_SPLIT_FOL True   --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER ''  --USE_PARALLEL True --NUM_PARALLEL_CORES 8 --PLOT_CURVES False --TRACKERS_FOLDER val/TRACKER_NAME

# test
python tools/track.py -f exps/example/dancetrack/yolox_x.py -c Pretrain、bytetrack_model.pth.tar -b 1 -d 1 --fp16 --fuse --test
# 评估需上传,见3.2小节

【注:默认生成路径和ByteTrack一致,为ByteTrack/YOLOX_outputs/yolox_x/tracker_results】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值