本文主要补充了dance的官网提交过程,主要在3.2小节~
全文参考了以下文章
ocsort安装 OC-SORT:基于PyTorch的视频多目标追踪教程-CSDN博客
dance数据集下载 https://zhuanlan.zhihu.com/p/678765740
dance官网:https://github.com/DanceTrack/DanceTrack.git
Byte多目标跟踪中使用trackeval评估dancetrack运行结果_dancetrack评估提交-CSDN博客
目录
一、 OC-SORT安装
# 安装 github:https://github.com/noahcao/OC_SORT 参考:https://blog.csdn.net/weixin_44283270/article/details/132804342 conda create -n ocsort python=3.8 conda activate ocsort #根据cuda版本安装torch pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html cd ocsort pip install -r requirements.txt python setup.py develop pip install cython pip install pycocotools pip install cython_bbox pandas xmltodict # ----------------------------------- # 安装成功,若有MOT17数据集,可进行测试 # ocsort_x_mot17.pth.tar下载: # https://drive.google.com/drive/folders/1LnhZVJlpufUnWuObZASIN1KwfhuvT_a8 # 测试 MOT17 python tools/run_ocsort.py -f exps/example/mot/yolox_x_mix_det.py -c pretrained/ocsort_x_mot17.pth.tar -b 1 -d 1 --fp16 --fuse --expn oc_yolox_mot17 # ----------------------------------- # Dance数据集下载见下章 # Dance val python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_val.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --expn dance-val # Dance test python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_test.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --test --expn dance-test
二、 Dance数据集准备
# 1、安装DanceTrack项目: git地址下载:https://github.com/DanceTrack/DanceTrack.git # 2、下载dancetrack数据集和权重 百度网盘https://pan.baidu.com/share/init?surl=9O3IvYNzzrcLqlODHKYUwA 请输入提取码 (code:awew) # 权重路径 bytetrack_models/bytetrack_model.pth.tar # 3、修改DanceTrack-main/tools/convert_dance_to_coco.py DATA_PATH = 'dancetrack' OUT_PATH = os.path.join(DATA_PATH, 'annotations') SPLITS = ['train', 'val', 'test'] # 4、运行命令生成coco的annotations文件 python tools/convert_dance_to_coco.py #得到数据集结构如下图
三、 OC-SORT评估Dance
3.1、 val验证集评估
# 将dancetrack数据集放入对应项目路径下:oc-sort/datasets # Dancetrack val python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_val.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --expn dance-val
val结果可以在本地进行评估
3.2、 test测试集评估
# Dancetrack test python tools/run_ocsort_dance.py -f exps/example/mot/yolox_dancetrack_test.py -c pretrained/bytetrack_dance_model.pth.tar -b 1 -d 1 --fp16 --fuse --test --expn dance-test
test测试集评估需要上传官网
A、首先将YOLO_outputs/dance-test内容下载打包为tracker文件,等待上传;
【说明:注意将所有txt文件存入tracker文件夹内,对tracker文件夹进行打包,且文件夹名称必须问tracker。这里和MOT17官网不同,MOT17是直接对所有txt压缩打包,这里是对文件夹进行压缩打包】
B、注册 CodaLab - Sign In 1min搞定中间需要邮箱验证一下即可;
C、注册成功后,进入到DanceTrack这个比赛,进行提交,按提交按钮时弹出上传界面;
![]()
CodaLab主页找到比赛 ![]()
填写提交内容 ![]()
提交成功 ![]()
提交后等约5min中状态由running到Finished标题
可以下载View scoring output log看详细精度D、可以看到最后的精度和论文一致;
四、 ByteTrack评估Dance
需要在DanceTrack-main项目下放入ByteTrack项目;
1、首先参照第二章,如果已经有DanceTrack项目和dancetrack数据集则忽略以下内容;
# DanceTrack项目和数据集准备 # 1、安装DanceTrack项目: git地址下载:https://github.com/DanceTrack/DanceTrack.git # 2、下载dancetrack数据集和权重 百度网盘https://pan.baidu.com/share/init?surl=9O3IvYNzzrcLqlODHKYUwA 请输入提取码 (code:awew) # 权重路径 bytetrack_models/bytetrack_model.pth.tar # 3、修改DanceTrack-main/tools/convert_dance_to_coco.py DATA_PATH = 'dancetrack' OUT_PATH = os.path.join(DATA_PATH, 'annotations') SPLITS = ['train', 'val', 'test'] # 4、运行命令生成coco的annotations文件 python tools/convert_dance_to_coco.py
2、将DanceTrack-main/Bytetrack中的内容替换到Bytetrack项目相应地方,再将Bytetrack整个内容放入DanceTrack-main/Bytetrack中就可以进行评估测试;
3、测试和评估
# 根目录 DanceTrack cd ByteTrack # val python tools/track.py -f exps/example/dancetrack/yolox_x.py -c Pretrain、bytetrack_model.pth.tar -b 1 -d 1 --fp16 --fuse # 评估 # 将ByteTrack/YOLOX_outputs/yolox_x/tracker_results 内容放入val/TRACKER_NAME cd .. python TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL val --METRICS HOTA CLEAR Identity --GT_FOLDER dancetrack/val --SEQMAP_FILE dancetrack/val_seqmap.txt --SKIP_SPLIT_FOL True --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER '' --USE_PARALLEL True --NUM_PARALLEL_CORES 8 --PLOT_CURVES False --TRACKERS_FOLDER val/TRACKER_NAME # test python tools/track.py -f exps/example/dancetrack/yolox_x.py -c Pretrain、bytetrack_model.pth.tar -b 1 -d 1 --fp16 --fuse --test # 评估需上传,见3.2小节
【注:默认生成路径和ByteTrack一致,为ByteTrack/YOLOX_outputs/yolox_x/tracker_results】