多目标跟踪数据集

这篇博客介绍了SportsMOT和DanceTrack两个多目标跟踪数据集,用于测试和提升跟踪算法性能。SportsMOT包含大量体育场景视频,挑战在于物体关联,提出了MixSort跟踪框架。DanceTrack则关注遮挡和相似动作下的人体跟踪。此外,还分享了作者改进的可视化代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

SportsMOT数据集

DanceTrack数据集

自己改进的可视化代码:


SportsMOT数据集

SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes

SportsMOT是一个新的大规模多目标追踪数据集,专注于多样化的体育场景,其中需要跟踪场上的所有运动员。该数据集包括来自篮球、排球和足球等三类体育项目的240个视频序列,超过15万帧(几乎是MOT17的15倍),以及超过160万个边界框(MOT17的3倍)。该数据集具有两个关键特性:1) 快速和变速运动;2) 相似但可区分的外观。

本次任务中,作者对几种最先进的跟踪器进行了基准测试,发现 SportsMOT 的关键挑战在于物体关联。为此提出一种新的多目标跟踪框架,称为 MixSort,引入了类似MixFormer的结构作为辅助关联模型,与现有的基于检测的追踪器结合使用。MixSort通过将定制的外观关联与原始的运动关联相结合,实现了在SportsMOT和MOT17上的最先进性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值