Spark Session 与 Spark Context的区别

Spark SessionSpark 2.0Spark应用程序的统一入口点。 它提供了一种以较少数量的构造与各种spark功能交互的方法。 此时就不需要spark context, hive context, SQL context这些了,都包含在Spark Session中了.

创建SparkSession

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder
.appName("SparkSessionExample") 
.master("local[4]") 
.config("spark.sql.warehouse.dir", "target/spark-warehouse")
.enableHiveSupport()
.getOrCreate

SparkSession包含了SparkContext,SparkContext又包含了SparkConf

val spark: SparkSession = SparkSession.builder
    .appName("SparkSessionExample")
    .master("local[4]")
    .config("spark.sql.warehouse.dir", "target/spark-warehouse")
    .enableHiveSupport()
    .getOrCreate
 //SparkSession包含了SparkContext
  val sparkContext: SparkContext = spark.sparkContext
  //SparkContext包含了SparkConf
  val conf: SparkConf = sparkContext.getConf

换一个例子看看

//首先构建sparkconf
  val conf: SparkConf = new SparkConf().setAppName("wordcount").setMaster("local")
  //通过sparkconf构建SparkContext
  val sparkContext = new SparkContext(conf)
  //通过SparkContext也能获取conf,这是必然的
  val conf1: SparkConf = sparkContext.getConf

当我已经有了Spark Context时,为什么需要Spark Session?

答案的一部分是,它将Spark中的所有不同上下文统一起来,并避免开发人员担心创建差异上下文。 但是除了这个巨大的优势之外,当有多个用户使用同一个Spark上下文时,Spark的开发人员还试图解决该问题。

假设我们有多个用户访问共享了Spark Context的同一个笔记本环境,并且要求有一个隔离的环境共享同一个Spark Context。 在2.0之前的版本,解决方案是创建多个Spark Context,即针对每个隔离的环境或用户创建Spark上下文,这是一项昂贵的操作(每个JVM通常为1)。 但是随着spark会话的介绍,此问题已得到解决。

总结

  • Spark Session包含了Spark Context
  • Spark Context包含了SparkConf
  • 2.0 以后,记住用SparkSession就足够了,避免混淆

参考

A tale of Spark Session and Spark Context | by achilleus | Medium
https://medium.com/@achilleus/spark-session-10d0d66d1d24

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸭梨山大哎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值