股票BIAS信号分析

代码如下

import akshare as ak
import pandas as pd
import numpy as np
import yagmail
import os
from datetime import datetime

# ETF代码与名称的映射
etf_names = {
    '510300': '300ETF',
    '159915': '创业板',
    '513050': '中概互联网ETF',
    '159941': '纳指ETF',
    '518880': '黄金ETF',
    '511090': '30年国债ETF'
}

# 获取ETF数据的函数
def fetch_etf_data(symbol="510300"):
    # 使用 akshare 的 fund_etf_hist_em 接口获取 ETF 数据
    df = ak.fund_etf_hist_em(symbol=symbol, period="daily", adjust='qfq')

    # 转换日期格式
    df['日期'] = pd.to_datetime(df['日期'])  # 假设日期列名为 '日期'
    df.set_index('日期', inplace=True)

    # 重命名列以符合标准格式
    df.rename(columns={
        '开盘': 'Open',
        '最高': 'High',
        '最低': 'Low',
        '收盘': 'Close',
        '成交量': 'Volume'
    }, inplace=True)

    return df

# 计算BIAS指标的函数
def calculate_bias(df, window=12):
    # 计算移动平均线
    df['MA'] = df['Close'].rolling(window=window).mean()
    
    # 计算BIAS,并保留两位小数,加上百分号
    df['BIAS'] = ((df['Close'] - df['MA']) / df['MA'] * 100).round(2).astype(str) + '%'
    
    return df

# 生成交易信号的函数
def generate_signals(df, buy_threshold=-6, sell_threshold=6):
    df['信号'] = '无信号'
    df.loc[df['BIAS'].str.rstrip('%').astype(float) < buy_threshold, '信号'] = '买入信号'
    df.loc[df['BIAS'].str.rstrip('%').astype(float) > sell_threshold, '信号'] = '卖出信号'
    return df

# 发送邮件的函数
def send_email(html_content, today, attachment_path=None):
    try:
        # 邮件主题
        subject = f"ETF BIAS分析报告({today})"

        # 初始化 yagmail
        yag = yagmail.SMTP(user=os.getenv('from_email'), password=os.getenv('password'), host='smtp.qq.com', port=465,
                           smtp_ssl=True)

        # 发送邮件
        yag.send(to=os.getenv('to_email'), subject=subject, contents=[html_content], attachments=attachment_path)

        print("邮件发送成功")
    except Exception as e:
        print(f"邮件发送失败: {e}")

# 生成简单HTML表格的函数
def generate_simple_html_table(df, name, symbol):
    # 表头
    html = f"<h3>{name} ({symbol}) 最近5天的BIAS信号:</h3>"
    html += "<table border='1'><tr><th>日期</th><th>收盘价</th><th>移动平均线</th><th>BIAS</th><th>信号</th></tr>"

    # 表格内容
    for date, row in df.tail(5).iterrows():
        # 根据信号设置颜色
        if row['信号'] == '买入信号':
            signal_color = "blue"
        elif row['信号'] == '卖出信号':
            signal_color = "red"
        else:
            signal_color = "black"
        
        html += f"<tr><td>{date.strftime('%Y-%m-%d')}</td><td>{round(row['Close'], 2)}</td><td>{round(row['MA'], 2)}</td><td>{row['BIAS']}</td><td><span style='color:{signal_color};'>{row['信号']}</span></td></tr>"

    html += "</table>"
    return html

# 主程序
if __name__ == "__main__":
    # 获取当前日期
    today = datetime.today().strftime('%Y-%m-%d')

    # 存储所有ETF的分析结果
    results = []

    # 遍历所有ETF
    for symbol, name in etf_names.items():
        print(f"\n正在分析 {name} ({symbol}) 的BIAS信号...")
        
        # 获取ETF数据
        df = fetch_etf_data(symbol)
        
        # 计算BIAS指标
        df = calculate_bias(df, window=12)
        
        # 生成交易信号
        df = generate_signals(df, buy_threshold=-6, sell_threshold=6)
        
        # 生成简单HTML表格
        html_table = generate_simple_html_table(df, name, symbol)
        results.append(html_table)

    # 将所有结果合并为HTML内容
    html_content = "<html><body>" + "<br>".join(results) + "</body></html>"

    # 发送邮件
    send_email(html_content, today)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸭梨山大哎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值