4、自编码器

自编码器其实也是一种神经网络算法。它与神经网络的区别有:

1、自编码器适合无监督学习,即没有标注,也可以提取高阶特征;

2、输入与输出一致,期望提炼出高阶特征来还原自身数据。

3、单隐含层的自编码器,类似于主成分分析(PCA)


实际作用:

先用自编码器的方法进行无监督的预训练,提取特征并初始化权重,然后使用标注信息进行监督式的训练。

当然不局限于预训练,直接使用自编吗器进行特征提取与分析也是可以的(降维)。


TensorFlow实现:

最具代表性的是去噪自编码器。

1、定义一个类,包含:

  • 网络结构,即一些数学公式:激活函数、最终层的复原函数
  • 损失函数
  • 一些调用成员函数:权重初始化、cost及训练、复原、权重的提取
2、加载数据,标准化处理,迭代学习

代码:
#-*-coding:utf-8-*-
"""
Created on 17/3/14 下午3:30

base Info
"""
__author__ = 'sun'
__version__ = '1.0'

import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


# 使用一种参数初始化方法xavier initialization,它的特点是会根据某一层网络的输入,输出节点数量自动调整最合适的分布。
# 如果深度学习模型的权重初始化的太小,那么信号将在每层间传输时逐渐缩小而难以产生作用,但如果初始化得太大,那信号将在每层间传递时逐渐放大并导致发散和失效。
# Xavier就是让权重满足0均值,同时方差为2/(nin + nout),分布可以用均匀分布,
def xavier_init(fan_in, fan_out, constant=1):
    low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
    high = constant * np.sqrt(6.0 / (fan_in + fan_out))
    return tf.random_uniform((fan_in, fan_out),
                             minval=low, maxval=high,
                             dtype=tf.float32)


# 定义去噪自编吗的class,包含一个构建函数__init__(),还有一些常用的成员函数

class AdditiveGaussianNoiseAutoencoder(object):
    # n_input:输入变量数;n_hidden:隐含层节点数;transfer_function:隐含层的激活函数;scale:高斯噪声系数
    def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,
                 optimizer=tf.train.AdamOptimizer(), scale=0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights

        # 定义网络结构
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(
            self.x + scale * tf.random_normal((n_input,)),
            self.weights['w1']), self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden,
                                               self.weights['w2']), self.weights['b2'])

        # 定义损失函数,平方误差作为cost
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(
            self.reconstruction, self.x), 2.0))
        self.optimizer = optimizer.minimize(self.cost)
        init = tf.global_variables_initializer()
        self.sess = tf.Session()
        self.sess.run(init)

    # 参数初始化函数定义
    def _initialize_weights(self):
        all_weights = dict()
        all_weights['w1'] = tf.Variable(xavier_init(self.n_input, self.n_hidden))
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
        return all_weights

    # 定义计算损失cost及执行一步训练的函数
    def partial_fit(self, x):
        cost, opt = self.sess.run((self.cost, self.optimizer),
                                  feed_dict={self.x: x, self.scale: self.training_scale})
        return cost

    # 只求损失cost的函数
    def calc_total_cost(self, x):
        return self.sess.run(self.cost,
                             feed_dict={self.x: x, self.scale: self.training_scale})

    # 返回自编码器隐含层的输出结果
    def transform(self, x):
        return self.sess.run(self.hidden,
                             feed_dict={self.x: x, self.scale: self.training_scale})

    # 将隐含层的输出结果作为输入,通过重建层将提取到的高阶特征复原为原始数据
    def generate(self, hidden=None):
        if hidden is None:
            hidden = np.random_normal(size=self.weights["b1"])
        return self.sess.run(self.reconstruction,
                             feed_dict={self.hidden: hidden})

    # 整体运行一遍复原过程,包括提取高阶特征和通过高阶特征复原数据
    def reconstruct(self, x):
        return self.sess.run(self.construction,
                             feed_dict={self.x: x, self.scale: self.training_scale})

    # 获取隐含层的权重W1
    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])


# 使用我们定义好的类
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)


# 标准化处理
def standard_scale(x_train, x_test):
    preprocessor = prep.StandardScaler().fit(x_train)
    x_train = preprocessor.transform(x_train)
    x_test = preprocessor.transform(x_test)
    return x_train, x_test


# 获取随机block,不放回抽样
def get_random_block_from_data(data, batch_size):
    start_index = np.random.randint(0, len(data) - batch_size)
    return data[start_index: (start_index + batch_size)]


x_train, x_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step = 1

# 创建一个AGN自编吗器的实例
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,
                                               n_hidden=200,
                                               transfer_function=tf.nn.softplus,
                                               optimizer=tf.train.AdagradOptimizer(learning_rate=0.001),
                                               scale=0.01)

for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = int(n_samples / batch_size)
    for i in range(total_batch):
        batch_xs = get_random_block_from_data(x_train, batch_size)
        cost = autoencoder.partial_fit(batch_xs)
        avg_cost += cost / n_samples * batch_size

    if epoch % display_step == 0:
        print("Epoch:", '%04d' % (epoch + 1), "cost=",
              "{:.9f}".format(avg_cost))

# 计算测试集整体的cost
print("Total cost: " + str(autoencoder.calc_total_cost(x_test)))

小坑:
1、我开始在Pycharm里面执行深度学习代码了,如果我们要调用tensorflow,就要修改我们的配置Project Interpreter。
因为我们的tensorflow是在Anaconda3这个环境下安装的,所以我们需要选这里的python。
参考:http://stackoverflow.com/questions/37447906/how-to-get-virtualenv-tensorflow-to-work-in-pycharm

结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值