理解CNN-2

http://blog.csdn.net/zouxy09/article/details/9993371

在反向传播中:用得它向量,等于后一层的灵敏度得它乘以函数的导数乘以权重,得到本层的灵敏度

对于最后的输出层神经元,就是函数导数乘以误差。本质就是求出对应误差的灵敏感应度。

误差对于该层权重的偏导等于该层的输入乘以该层灵敏度。

更新权值就是该偏导数乘以一个负学习率

理解这些对于理解之后的就比较简单


CNNs训练

不论使用何种框架进行CNNs训练,共有3种数据集:

Training Set用于训练网络。

Validation Set用于训练时测试网络准确率。

Test Set用于测试网络训练完成后的最终正确率。

Caffe生成的数据分为2种格式:Lmdb和Leveldb。

它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。

虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要的是lmdb允许多种训练模型同时读取同一组数据集。

因此lmdb取代了leveldb成为Caffe默认的数据集生成格式。

Google Protocol Buffer的安装

Protocol Buffer是一种类似于XML的用于序列化数据的自动机制。

首先在Protocol Buffers的中下载最新版本:

https://developers.google.com/protocol-buffers/docs/downloads

解压后运行:

./configure
$ make
$ make check
$ make install
pip installprotobuf
添加动态链接库
exportLD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

Lmdb的安装

pip install lmdb

要parse(解析)一个protobuf类型数据,首先要告诉计算机你这个protobuf数据内部是什么格式(有哪些项,这些项各是什么数据类型的决定了占用多少字节,这些项可否重复,重复几次),安装protobuf这个module就可以用protobuf专用的语法来定义这些格式(这个是.proto文件)了,然后用protoc来编译这个.proto文件就可以生成你需要的目标文件。

想要定义自己的.proto文件请阅读:

https://developers.google.com/protocol-buffers/docs/proto?hl=zh-cn

编译.proto文件

protoc--proto_path=IMPORT_PATH --cpp_out=DST_DIR --java_out=DST_DIR--python_out=DST_DIR path/to/file.proto
--proto_path 也可以简写成-I 是.proto所在的路径

输出路径:

--cpp_out 要生成C++可用的头文件,分别是***.pb.h(包含申明类)***.pb.cc(包含可执行类),使用的时候只要include “***.pb.h”

--java_out 生成java可用的头文件

--python_out 生成python可用的头文件,**_pb2.py,使用的时候import**_pb2.py即可

最后一个参数就是你的.proto文件完整路径。

欢迎参与讨论并关注 本博客 和 微博 以及 知乎个人主页 后续内容继续更新哦~

转载请您尊重作者的劳动,完整保留 上述文字 以及 文章链接 ,谢谢您的支持!

关于召回率和准确率:

召回即查全率

准确即精度

http://blog.sina.com.cn/s/blog_4b59de070100ehl7.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值