Demo-深度学习使用数据集进行训练和测试

本文提供了一个详尽的例子,展示了如何在深度学习中处理数据输入和预处理,包括从数据集加载到训练和测试的完整流程。
摘要由CSDN通过智能技术生成

一个包含数据输入和预处理流程的使用数据集进行训练和测试的完整例子

import tensorflow as tf
train_files = tf.train.match_filenames_once("path/to/train-file-*")
test_files = tf.train.match_filenames_once("path/to/test-file-*")

# 定义parser方法从TFRecord中解析数据
def parser(record):
    features = tf.parse_single_example(
        record,
        features = {
            'image': tf.FixedLenFeature([], tf.string),
            'label': tf.FixedLenFeature([], tf.int64),
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'channels': tf.FixedLenFeature([], tf.int64)
        }
    )

    # 从原始图像数据解析出像素矩阵, 并根据图像尺寸还原图像
    decode_image = tf.decode_raw(features['image'], tf.uint8)
    decode_image.set_shape([features['height'], features['width'], features['channels']])

    label = features['l
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值