Agent的作用
根据输入信息动态、顺序执行特定动作,一个Agent会被赋予某些工具来执行特定的任务,Agent会反复选择一个工具,运行工具,观察输出结果直到得出最终答案。
创建Agent需要
- 驱动Agent的LLM模型对象
- 工具:如谷歌搜索,数据库查询
# 查看所有内置工具名称
from langchain.agents import get_all_tool_names
all_tools = get_all_tool_names()
print("所有可用的工具:")
for tool in sorted(all_tools):
print(f" - {tool}")
- 代理名称
一个字符,代表具体Agent类。这个类中含有一组预定义的提示词模板。以帮助llm在不同场景或任务下如何执行。如涉及网页数据爬取,则提示词中会包含爬虫相关的任务指示,帮助llm准确执行任务
代码实现
准备
pip install google-search-results
serpapi官网(https://serpapi.com/)注册获取apikey
代码及运行结果展示
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI
tools = load_tools(["serpapi","llm-math"], llm=client, serpapi_api_key=SERPAPI_API_KEY)
agent = initialize_agent(tools, client, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("北京市周四、周五、周六的天气怎么样?")

LangChain Agent构建指南
874

被折叠的 条评论
为什么被折叠?



