Langchain搭建LLM应用程序之三 Agent

LangChain Agent构建指南
Agent的作用

根据输入信息动态、顺序执行特定动作,一个Agent会被赋予某些工具来执行特定的任务,Agent会反复选择一个工具,运行工具,观察输出结果直到得出最终答案。

创建Agent需要
  • 驱动Agent的LLM模型对象
  • 工具:如谷歌搜索,数据库查询
# 查看所有内置工具名称
from langchain.agents import get_all_tool_names


all_tools = get_all_tool_names()
print("所有可用的工具:")
for tool in sorted(all_tools):
    print(f"  - {tool}")
  • 代理名称

一个字符,代表具体Agent类。这个类中含有一组预定义的提示词模板。以帮助llm在不同场景或任务下如何执行。如涉及网页数据爬取,则提示词中会包含爬虫相关的任务指示,帮助llm准确执行任务

代码实现
准备

pip install google-search-results
serpapi官网(https://serpapi.com/)注册获取apikey

代码及运行结果展示
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.chat_models import ChatOpenAI


tools = load_tools(["serpapi","llm-math"], llm=client, serpapi_api_key=SERPAPI_API_KEY)
agent = initialize_agent(tools, client, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("北京市周四、周五、周六的天气怎么样?")

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值