Udacity Self-Driving自动驾驶目标检测数据集使用指南

本文介绍了如何使用Udacity的自动驾驶数据集,包括dataset1和dataset2,涉及数据格式转换、类别处理、预处理代码以及数据集整理成VOC格式的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、dataset1

下载dataset1,该数据集大小为1.5G,共有9420张图像。label格式如下图所示,共有Car、Truck、Pedestrian三类。(使用数据格式转化工具可直接实现voc格式的转化,参考博客LITTI、VOC、Udacity等自动驾驶数据集下载及格式转化
在这里插入图片描述
实现:

python main.py --from udacity-crowdai --from-path -crowdai --to voc --to-path datasets

生成类别为:car、truck、person

二、dataset2

下载dataset2,该数据集大小为3.3G,共有15000张图像。label格式如下图所示,共有Car、Truck、Pedestrian、trafficLight(Red、RedLeft、Green、Yellow、YellowLeft)、biker这些类别。其中,有标签的图片共有13063张,暂时不用管,在转化voc过程中,可直接实现无标签图像的清除。
原label的格式如下图
在这里插入图片描述
在trafficLight标签类别下,由于想要选取最后一列字符串作为标签label,对该格式文件进行预处理,生成新的格式统一的标签label文件,preprocess.py代码如下:

# preprocess.py
file = open('labels.csv', 'r').readlines()
fileout = open('labels1.csv', 'w')
for line 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值