opencv-python最小外接矩形

该博客介绍了如何利用OpenCV库进行图像处理,包括将图像转换为灰度和二值图,然后通过cv2.findContours()函数检测轮廓。接着,它展示了如何找到边界框、最小外接矩形和最小封闭圆,并在图像上绘制这些形状。最后,图像被保存以供进一步分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所用函数:
cv2.threshold() —— 阈值处理
cv2.findContours() —— 轮廓检测
cv2.boundingRect() —— 最大外接矩阵
cv2.rectangle() —— 画出矩形
cv2.minAreaRect —— 找到最小外接矩形(矩形具有一定的角度)
cv2.boxPoints —— 外接矩形的坐标位置
cv2.drawContours(image, [box], 0, (0, 0, 255), 3) —— 根据点画出矩形

# -*- coding: utf-8 -*-


import cv2
import numpy as np

image = cv2.imread('/home/rose/PycharmProjects/PSENet.pytorch/test/img/20190507193429910.png')
# 图像转灰度图
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 图像转二值图
ret, thresh = cv2.threshold(img, 230, 255, cv2.THRESH_BINARY_INV)
# 功能:cv2.findContours()函数来查找检测物体的轮廓。
#参数:
# 参数1:寻找轮廓的图像,接收的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值