学习理论-VC维

学习理论

1、基本概念
2、PAC理论
3、VC维
4、极大似然,最大后验概率,贝叶斯估计
5、模型评估与评价指标
6、模型诊断调参

三、VC维

​ 在PAC理论中,我们用假设空间的取值 N N N来描述模型的复杂度,然而很多时候假设空间的取值是无限的,比如线性模型中模型属于连续空间,我们无法用取值来衡量模型的复杂度,VC维的主要价值在于用VC维(维度)衡量模型的复杂度,同时给出了误差上界(个人见解)。

VC维:给定一个样本集 S = { x 1 , x 2 , . . . , x m } S=\{x^{1},x^{2},...,x^{m}\} S={x1,x2,...,xm} ,我们称假设空间 H H H可以打散 S S S,当且仅当对于样本集 S S S的任何一种标签(与样本的分布无关)都能被 H H H线性可分。一般来说: 等于假设类的参数个数

比如下图:一个二维的假设空间其最大能打散(线性可分)的样本集数为3,VC维为3。

在这里插入图片描述

​ 对于假设空间 H H H,其 V C ( H ) = d VC(H)=d VC(H)=d,那么至少以 1 − σ 1-\sigma 1σ的概率,对于假设空间下 h h h,我们有:
P ( ∣ ϵ ( h k ) − ϵ ^ ( h k ) ∣ ≤ d m l o g m d + 1 m l o g 1 σ ) ≥ 1 − σ P\left(|\epsilon(h_{k})-\hat{\epsilon} (h_{k})|\leq \sqrt{\frac{d}{m}log\frac{m}{d}+\frac{1}{m}log\frac{1}{\sigma}}\right)\geq 1-\sigma P(ϵ(hk)ϵ^(hk)mdlogdm+m1logσ1 )1σ
也就是说至少 1 − σ 1-\sigma 1σ的概率有,泛化误差与训练误差的方差满足下式:
ϵ ( h ^ ) ≤ ϵ ^ ( h ∗ ) ∣ + d m l o g m d + 1 m l o g 1 σ \epsilon(\hat{h})\leq \hat{\epsilon} (h^{*})|+ \sqrt{\frac{d}{m}log\frac{m}{d}+\frac{1}{m}log\frac{1}{\sigma}} ϵ(h^)ϵ^(h)+mdlogdm+m1logσ1
其中 h ^ = a r g min ⁡ h ∈ H ∼ D ^ m i n ( ϵ ^ ( h ) ) \hat{h}=arg\min_{h\in H \sim \hat{D}}min(\hat{\epsilon}(h)) h^=argminhHD^min(ϵ^(h)), h ∗ = a r g min ⁡ h ∈ H ∼ D m i n ( ϵ ( h ) ) h^{*}=arg\min_{h\in H \sim D}min(\epsilon(h)) h=argminhHDmin(ϵ(h))

上式可以看作是PAC理论误差分析的VC版,而VC维中定义的假设空间的复杂度是定义在VC维上的,一般而言,VC维与模型的参数有关,特征的维度。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值